Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zarejestruj
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Archiwum
  • Prace online
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Rada redakcyjna
    • Proces recenzji
    • Komitet Logic and Logical Philosophy
    • Polityka Open Access
    • Polityka prywatności
    • Kontakt
  • Zarejestruj
  • Zaloguj
  • Język:
  • English
  • Język Polski

Logic and Logical Philosophy

On some extensions of the class of MV-algebras
  • Strona domowa
  • /
  • On some extensions of the class of MV-algebras
  1. Strona domowa /
  2. Archiwum /
  3. Tom 25 Nr 1 (2016): marzec /
  4. Artykuły

On some extensions of the class of MV-algebras

Autor

  • Krystyna Mruczek-Nasieniewska Nicolaus Copernicus University in Toruń

DOI:

https://doi.org/10.12775/LLP.2015.010

Słowa kluczowe

MV-algebra, variety, identity, P-compatible identity, equational base, subdirectly irreducible algebras

Abstrakt

In the present paper we will ask for the lattice L(MVEx) of subvarieties of the variety defined by the set Ex(MV) of all externally compatible identities valid in the variety MV of all MV-algebras. In particular, we will find all subdirectly irreducible algebras from the classes in the lattice L(MVEx) and give syntactical and semantical characterization of the class of algebras defined by P-compatible identities of MV-algebras.

Biogram autora

Krystyna Mruczek-Nasieniewska - Nicolaus Copernicus University in Toruń

Department of Logic

Bibliografia

Chang, C.C., “Algebraic analysis of many valued logics”, Transactions of the American Mathematical Society, 88 (1958): 467–490. DOI: 10.1090/S0002-9947-1958-0094302-9 and DOI: 10.2307/1993227

Chang, C.C., “A new proof of the completeness of Łukasiewicz axioms”, Transactions of the American Mathematical Society, 93 (1959): 74–80. DOI: 10.1090/S0002-9947-1959-0122718-1

Di Nola, A., and A. Lettieri, “Equational characterization of all varieties of MV-zlgebras”, Journal of Algebra, 221 (1999): 463–474.

Gajewska-Kurdziel, K., “On the lattice of some varieties defined by P-compatible identities”, Zeszyty Naukowe Uniwersytetu Opolskiego, Matematyka, 29 (1995): 45–47.

Grigolia, R., “Algebraic analysis of Łukasiewicz-Tarski’s n-valued logical systems”, pp. 81–92 in Selected Papers on Łukasiewicz Sentential Calcui, R. Wojcicki (ed.), Zakład Narodowy imienia Ossolińskich, Wydawnictwo Polskiej Akademii Nauk: Wrocław, Warszawa, Krakow, Gdańsk, 1977.

Hałkowska, K., “Lattice of equational theories of P-compatible varieties”, pp. 587–595 in Logic at Work. Essays dedicated to the memory of Helena Rasiowa, E. Orłowska (ed.), Springer: Heidelberg, New York, 1998.

Komori, Y., “Super-Lukasiewicz implicational logics”, Nagoya Mathematical Journal, 72 (1978): 127–133.

Komori, Y., “Super Łukasiewicz propositional logics”, Nagoya Mathematical Journal, 84 (1981): 119–133.

Łukasiewicz, J., “O logice trojwartosciowej”, Ruch filozoficzny, 5 (1920): 169–171.

Łukasiewicz, J., and A. Tarski, “Untersuchungen uber den Aussagenkalkül”, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, 23 Classe iii (1930): 30–50.

Mruczek-Nasieniewska, K., “The varieties defined by P-compatible identities of modular ortholattices”, Studia Logica 95 (2010): 21–35. DOI: 10.1007/s11225-010-9255-5

Mundici, D., “Interpretation of AF CU-algebras in Lukasiewicz sentential calculus”, J. Funct. Anal., 65 (1986): 15–63.

Płonka, J., “P-compatible identities and their applications to classical algebras”, Math. Slovaca, 40, 1 (1990): 21–30.

Płonka, J., “Subdirectly irreducible algebras in varieties defined by externally compatible identities”, Studia Scientarium Hungaria, 27 (1992): 267–271.

Rose, A., and J.B. Rosser, “Fragments of many-valued statement calculi”, Trans. Amer. Math. Soc., 87 (1958): 1–53. DOI: 10.1090/S0002-9947-1958-0094299-1 and DOI: 10.2307/1993083

Rosser, J.B., and A.R. Turquette, “Axiom schemes for m-valued propositional calculi”, The Journal of Symbolic Logic, 10, 3 (1945): 61–82. MR13718, http://projecteuclid.org/euclid.jsl/1183391454

Tarski, A., Logic, Semantic, Metamathematics, Oxford Univ. Press, 1956.

Wajsberg, M., “Aksjomatyzacja trojwartosciowego rachunku zdań”, Comptes rendue des seauces de la Societe des Sciences et des Lettres de Varsovie, Classe III, 24 (1931): 259–262.

Wajsberg, M,., “Beiträge zum Metaaussagenkalkül I”, Monatshefte für Mathematik und Physik 42 (1935): 221–242.

Logic and Logical Philosophy

Pobrania

  • PDF (English)

Opublikowane

04.05.2015

Jak cytować

1.
MRUCZEK-NASIENIEWSKA, Krystyna. On some extensions of the class of MV-algebras. Logic and Logical Philosophy [online]. 4 maj 2015, T. 25, nr 1, s. 35–49. [udostępniono 6.7.2025]. DOI 10.12775/LLP.2015.010.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Tom 25 Nr 1 (2016): marzec

Dział

Artykuły

Statystyki

Liczba wyświetleń i pobrań: 825
Liczba cytowań: 0

Crossref
Scopus
Google Scholar
Europe PMC

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Informacje

  • dla czytelników
  • dla autorów
  • dla bibliotekarzy

Newsletter

Zapisz się Wypisz się

Język / Language

  • English
  • Język Polski

Tagi

Szukaj przy pomocy tagu:

MV-algebra, variety, identity, P-compatible identity, equational base, subdirectly irreducible algebras
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa