Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Connecting bilattice theory with multivalued logic
  • Home
  • /
  • Connecting bilattice theory with multivalued logic
  1. Home /
  2. Archives /
  3. Vol. 23 No. 1 (2014): March /
  4. Articles

Connecting bilattice theory with multivalued logic

Authors

  • Daniele Genito Università di Salerno
  • Giangiacomo Gerla Università di Salerno

DOI:

https://doi.org/10.12775/LLP.2013.036

Keywords

bilattice, fuzzy logic, world-based semantics, approximate reasoning

Abstract

This is an exploratory paper whose aim is to investigate the potentialities of bilattice theory for an adequate definition of the deduction apparatus for multi-valued logic. We argue that bilattice theory enables us to obtain a nice extension of the graded approach to fuzzy logic. To give an example, a completeness theorem for a logic based on Boolean algebras is proved.

Author Biographies

Daniele Genito, Università di Salerno

Dipartimento di Matematica ed Informatica

Giangiacomo Gerla, Università di Salerno

Dipartimento di Matematica ed Informatica

References

Biacino, L., and G. Gerla, “Generated necessities and possibilities”, International Journal of Intelligent Systems, 7 (1992): 445–454. DOI: 10.1002/int.4550070504

Carotenuto, G., and G. Gerla, “Fuzzy logic programming and bilattices”, International Journal of Approximate Reasoning, 54 (2013): 1066–1086.

Deschrijver, G., O. Arieli, C. Cornelis and E. Kerre, “A bilattice-based framework for handling graded truth and imprecision”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15 (2007), 1: 13–41. DOI: 10.1142/S0218488507004352

Dubois, D., “On ignorance and contradiction considered as truth-values”, Logic Journal of the IGPL, 16 (2008), 2: 195–216. DOI: 10.1093/jigpal/jzn003

Dubois, D., J. Lang and H. Prade, “Possibilistic logic”, pages 439–513 in Handbook of Logic in AI and Logic Programming, vol. 3, D.M. Gabbay, et al. (eds.), Oxford University Press, 1994.

Fitting, M., “Bilattices and the semantics of logic programming”, Journal of Logic Programming, 11 (1991): 91–116. DOI: 10.1016/0743-1066(91)90014-G

Fitting, M., “Fixedpoint semantics for logic programming: a survey”, Theoretical Computer Science, 278 (2002): 25–51.

Ginsberg, M., “Multivalued logics: a uniform approach to inference in artificial intelligence”, Computer Intelligence, 4 (1988): 265–316. DOI: 10.1111/j.1467-8640.1988.tb00280.x

Gerla, G., “Closure operators, fuzzy logic and constraints”, pages 101–120 in Fuzzy Sets, Logics and Reasoning About Knowledge, D. Dubois, H. Prade E.P. Klement (eds.), vol. 15, in the Applied Logic Series, Kluwer Connecting Bilattice theory with multivalued logic 31 Academic Publishers, 1999. DOI: 10.1007/978-94-017-1652-9_7

Gerla, G., “Inferences in probability logic”, Artificial Intelligence, 70 (1994): 33–52. DOI: 10.1016/0004-3702(94)90102-3

Gerla, G., “Probability-like functionals and fuzzy logic”, Journal of Mathematical Analysis and Applications, 216 (1997): 438–465.

Gerla, G., Fuzzy Logic: Mathematical Tools for Approximate Reasoning, Kluwer Academic Publishers, 2001.

Gerla, G., “Effectiveness and multivalued logics”, Journal of Symbolic Logic, 71 (2006): 137–162. DOI: 10.2178/jsl/1140641166

Goguen, J.A., “The logic of inexact concepts”, Synthese, 19 (1968/1969): 325–373. DOI: 10.1007/BF00485654

Gottwald, S., Fuzzy Sets and Fuzzy Logic, Vieweg, Wiesbaden, 1993.

Hájek, P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.

Nikolov, N.G., “Deductive properties of intuitionistic fuzzy logic”, Fifth Int. Conf. on IFSs NIFS, 7 (2001), 3: 43–48.

Novak, V., Fuzzy Sets and their Applications, Adam Hilger, Bristol, 1989.

Pavelka, J., “On fuzzy logic I: Many-valued rules of inference”, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 25 (1979): 45–52. DOI: 10.1002/malq.19790250304

Pilitowska, A., “Interval bilatticesand some other simple bilattices”, pages 190–196 in Relational Methods in Computer Science, H.C.M. de Swart (ed.), vol. 2561 in Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg 2002. DOI: 10.1007/3-540-36280-0_13

Scarpellini, B., “Die Nichaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Łukasiewicz”, Journal of Symbolic Logic, 27 (1962): 159–170. DOI: 10.2307/2964111

Turunen, E., M. Öztürk and A. Tsoukiás, “Paraconsistent semantics for Pavelka style fuzzy sentential logic”, Fuzzy Sets and Systems, 161 (2010): 1926–1940. DOI: 10.1016/j.fss.2009.12.017

Zadeh, L.A., “Fuzzy sets”, Information and Control, 8 (1965): 338–353.

Logic and Logical Philosophy

Downloads

  • PDF

Published

2013-10-09

How to Cite

1.
GENITO, Daniele and GERLA, Giangiacomo. Connecting bilattice theory with multivalued logic. Logic and Logical Philosophy. Online. 9 October 2013. Vol. 23, no. 1, pp. 15-45. [Accessed 4 July 2025]. DOI 10.12775/LLP.2013.036.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 23 No. 1 (2014): March

Section

Articles

Stats

Number of views and downloads: 549
Number of citations: 4

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

bilattice, fuzzy logic, world-based semantics, approximate reasoning
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop