Skip to main content Skip to main navigation menu Skip to site footer
  • Register
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Archives
  • Online First Articles
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Advisory Board
    • Peer Review Process
    • Logic and Logical Philosophy Committee
    • Open Access Policy
    • Privacy Statement
    • Contact
  • Register
  • Login
  • Language:
  • English
  • Język Polski

Logic and Logical Philosophy

Powerset residuated algebras
  • Home
  • /
  • Powerset residuated algebras
  1. Home /
  2. Archives /
  3. Vol. 23 No. 1 (2014): March /
  4. Articles

Powerset residuated algebras

Authors

  • Mirosława Kołowska-Gawiejnowicz Adam Mickiewicz University, Poznań

DOI:

https://doi.org/10.12775/LLP.2013.029

Keywords

residuated algebra, symmetric residuated algebra, powerset residuated algebra, canonical embedding

Abstract

We present an algebraic approach to canonical embeddings of arbitrary residuated algebras into powerset residuated algebras. We propose some construction of powerset residuated algebras and prove a representation theorem for symmetric residuated algebras.

Author Biography

Mirosława Kołowska-Gawiejnowicz, Adam Mickiewicz University, Poznań

Faculty of Mathematics and Computer Science

References

Abrusci, V.M., “Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic”, The Journal of Symbolic Logic, 56 (1991), 4: 1403–1451. DOI: 10.2307/2275485

Bimbó, K., and J.M. Dunn, Generalized Galois Logics: Relational Semantics of Nonclassical Logical Calculi, CSLI Publications, 2008.

Bimbó, K., and J.M. Dunn, “Symmetric generalized Galois logics”, Logica Universalis, 3 (2009): 125–152. DOI: 10.1007/s11787-009-0004-3

Buszkowski, W., “Interpolation and FEP for logics of residuated algebras”, Logic Journal of the IGPL, 19 (2011), 3: 437–454. DOI: 10.1093/jigpal/jzp094

Buszkowski, W., “Many-sorted gaggles”, Link

Galatos, N., P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, vol. 151, Elsevier, Amsterdam, 2007.

Grishin, V.N., “On a generalization of the Ajdukiewicz-Lambek system”, pp. 315–343 in Studies in Non-Commutative Logics and Formal Systems (in Russian), Nauka, Moscow, 1983.

Kołowska-Gawiejnowicz, M., “Powerset residuated algebras and generalized Lambek calculus”, Mathematical Logic Quarterly, 43 (1997): 60–72. DOI: 10.1002/malq.19970430108

Kołowska-Gawiejnowicz, M., “On canonical embeddings of residuated groupoids”, to appear.

Kurtonina, N., and M. Moortgat, “Relational semantics for the Lambek-Grishin calculus”, pp. 210–222 in The Mathematics of Language, Ch. Ebert, G. Jäger and J. Michaelis (eds.), Lectures Notes in Computer Science, vol. 6149, 2010.

Lambek, J., “On the calculus of syntactic types”, pp. 166–178 in Structure of Language and Its Mathematical Aspects, R. Jacobson (ed.), AMS, Providence, 1961.

Moortgat, M., “Symmetries in natural language syntax and semantics: Lambek-Grishin calculus”, pp. 264–284 in Proceedings 14th Workshop on Logic, Language, Information and Computation, Lectures Notes in Computer Science, vol. 4576, Springer, 2007.

Orłowska, E., and I. Rewitzky, “Algebras for Galois-style connections and their discrete duality”, Fuzzy Sets and Systems, 161 (2010): 1325–1342. DOI: 10.1016/j.fss.2009.12.013

Logic and Logical Philosophy

Downloads

  • PDF

Published

2013-09-17

How to Cite

1.
KOŁOWSKA-GAWIEJNOWICZ, Mirosława. Powerset residuated algebras. Logic and Logical Philosophy. Online. 17 September 2013. Vol. 23, no. 1, p. 69–80. [Accessed 6 July 2025]. DOI 10.12775/LLP.2013.029.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol. 23 No. 1 (2014): March

Section

Articles

Stats

Number of views and downloads: 621
Number of citations: 0

Crossref
Scopus
Google Scholar
Europe PMC

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Information

  • For Readers
  • For Authors
  • For Librarians

Newsletter

Subscribe Unsubscribe

Language

  • English
  • Język Polski

Tags

Search using one of provided tags:

residuated algebra, symmetric residuated algebra, powerset residuated algebra, canonical embedding
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop