Monitoring soil moisture dynamics in multilayered Fluvisols

József Dezső, Szabolcs Czigány, Gábor Nagy, Ervin Pirhhoffer, Marcin Słowik, Dénes Lóczy

DOI: http://dx.doi.org/10.2478/17723

Abstract


The identification of drought-sensitive areas (DSAs) in floodplain Fluvisols of high textural pedodiversity is crucial for sustainable land management purposes. During extended drought periods moisture replenishment is only available by capillary rise from the groundwater. However, moisture flux is often hindered by capillary barriers in the interface between layers of contrasting textures. The results of HYDRUS-1D simulations run on multilayered soil profiles were integrated into textural maps to determine the spatial distribution of water dynamics on the floodplain of the Drava River (SW Hungary). Model runs and field data revealed limited moisture replenishment by capillary rise when both contrasting textural interfaces and sandy layers are present in the profile. By implementing these textural and hydraulic relations, a drought vulnerability map (DSA map) of the operational area of the Old Drava Programme (ODP) was developed. According to the spatial distribution of soils of reduced capillary rise, 52% of the ODP area is likely threatened by droughts. Our model results are adaptable for optimisation of land- and water-management practices along the floodplains of low-energy and medium-sized rivers under humid continental and maritime climates.

Keywords


floodplain pedodiversity, water balance monitoring, drought hazard, infiltration, HYDRUS-1D

Full Text:

PDF

References


ARKHANGELSKAYA T. A., KHOKHLOVA O. S., MYAKSHINA T. N., 2016, Mathematical modeling of water fluxes in arable chernozems under different land use. Eurasian Soil Science, 49:773-783. DOI:https://doi.org /10.1134/S1064229316070024

DEZSŐ J., LÓCZY D., SALEM A.M., NAGY G., 2018, Floodplain connectivity. [In:] Lóczy, D. (ed.), The Drava River: Environmental Problems and Solutions. Springer Science + Media, Cham, Switzerland, 2015–230.

European Parliament, 2008, Climate change–induced water stress and its impact on natural and managed ecosystems. Study for the European Parliament Committee on Environment, Public Health and Food Safety. IP/A/ENVI/FWC/2006-172/LOT1/C1/SC12). https://www.ecologic.eu/sites/.../SC_12_Climate_induced_Water_Stress_Jan_2008.pdf (accessed 20.02.2018)

FAO, 2012, Crop yield response to water. FAO Irrigation and Drainage Paper 66, Rome. http://www.fao.org/docrep/016/i2800e/i2800e.pdf (last accessed on February 21, 2018)

GIBLING M. R., RUST B. R., 2009, Alluvial Ridge-and-Swale Topography: A Case Study from the Morien Group of Atlantic Canada. [In:] Marzo, M. and Puigdefábregas, C. (eds), Alluvial Sedimentation. The International Association of Sedimentologists. DOI: 10.1002/9781444303995.ch11

GOHARDOUST M., SADEGHI R., ZIATABAR M., AHMADI M., JONES S.B., TULLER M., 2017, Hydraulic conductivity of stratified unsaturated soils: Effects of random variability and layering. J.of Hydr. 546: 81-89. Doi: http://dx.doi.org/10.1016/j.jhydrol.2016.12.055

HENDRICKX J. M. H., FLURY M., 2001, Uniform and preferential flow mechanisms in the vadose zone. [In:] National Academy Council, editor. Conceptual models of flow and transport in the fractured vadose zone. National Academy Press, Washington DC. 149-187.

HULISZ P., MICHALSKI, A., DĄBROWSKI M., KUSZA G., ŁÉCZYŃSKI L., 2015. Human-induced changes in the soil cover at the mouth of the Vistula River Cross-Cut (northern Poland). Soil Sci. Ann. 66:67-74.

KARASIEWICZA T.M., HULISZ P., NORYŚKIEWICZ A. M., STACHOWICZ-RYBKAC R., 2017, Post-glacial environmental history in NE Poland based on sedimentary records from the Dobrzyń Lakeland. Quaternary International xxx:1-15. DOI: https://doi.org/10.1016/j.quaint.2017.10.039

KARUP D., MOLDRUP P., TULLER M., ARTHUR E., DE JONGE L.W., 2016, Prediction of the soil water retention curve for structured soil from saturation to oven-dryness. Eur. J. of Soil Sci. 68:57-65. DOI:10.1111/ejss.12401

LABORCZI A., SZATMÁRI G., KAPOSI A D, PÁSZTOR L., 2018, Comparison of soil texture maps synthetized from standard depth layers with directly compiled products. GEODERMA, DOI: https://doi.org/10.1016/j.geoderma.2018.01.020

LABORCZI A., SZATMÁRI G., TAKÁCS K., PÁSZTOR L., 2016, Mapping of topsoil texture in Hungary using classification trees. JOURNAL OF MAPS 12:(5) 999-1009.

LIZASO J.I., RITCHIE J.T., 1997, Maize shoot and root response to root zone saturation during vegetative growth. Agronomy J. 89: 125-134.

LÓCZY D., DEZSŐ J., CZIGÁNY SZ., PROKOS H., TÓTH G.,2017, An environmental assessment of water replenishment to a floodplain lake. J. of Environ, 202: 337-347. DOI: http://dx.doi.org/10.1016/j.jenvman.2017.01.020

MAKÓ A., TÓTH B., HERNÁDI H., FARKAS CS., MARTH P., 2010, Introduction of the Hungarian Detailed Soil Hydrophysical Database (MARTHA) and its use to test external pedotransfer functions. Agrokémia és Talajtan. 59:29-38. (2010). DOI: http://dx.doi.org/10.1556/Agrokem.59.2010.1.4

MAMEDOV A. I., EKBERLI I., GÜLSER C., GÜMÜŞ I., ÇETIN U., LEVY G. J., 2016, Relationship between soil water retention model parameters and structure stability. Eurasian Journal of Soil Science 5:255 – 331. DOI: 10.18393/ejss.2016.4.314-321

MOHAWESH O., JANSSEN M., MAAITAH O., LENNARTZ B., 2017, Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport. Eurasian Soil Science, 50:1077-1085. DOI: https://doi.org/10.1134/S1064229317090046

MUALEM Y., 1976, A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513-522. DOI:10.1029/WR012i003p00513

MULLANE J.M., FLURY M., IQBAL H., FREEZE P.M., HINMAN C., COGGER C.G., SHI Z., 2015, Intermittent rainstorms cause pulses of nitrogen, phosphorus and copper in leachate from compost in bioretention systems. Sci. Total Environ. 537:294-303. DOI:10.1016/j.scitotenv.2015.07.057.

RAJKAI K., KABOS S., 1999, A talaj víztartóképesség-függvény (pF-görbe) tulajdonságok alapján történő becslésének továbbfejlesztése. Agrokémia és Talajtan 48:15-32.

RAJKAI K., TÓTH B., BARNA GY., HERNÁDI H., KOCSIS M., MAKÓ A., 2015, Particle-size and organic matter effects on structure and water retention of soils. Biologia. 70: 1456-1461. DOI: http://dx.doi.org/10.1515/biology-2015-0176

ŠIMŮNEK J., SEJNA M., SAITO H., SAKAI M., VAN GENUCHTEN M.TH., 2008, The HYDRUS-1D Software Package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 4.08. HYDRUS Software Series 3, Department of Environmental Sciences, University of California Riverside, Riverside, California, USA.

ŠIMŮNEK J., VAN GENUCHTEN M.TH., ŠEJNA M., 2016, Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J. 15 DOI:10.2136/vzj2016.04.0033

SŁOWIK M., DEZSŐ J., MARCINIAK A., TÓTH G., KOVÁCS J., 2018, Evolution of river planforms downstream of dams: Effect of dam construction or earlier human‐induced changes?. Earth Surf. Process. Landforms 43:2045–2063

TÓTH B., WEYNANTS M.,NEMES A., MAKÓ A., BILAS G., TÓTH G., 2015, New generation of hydraulic pedotransfer functions for Europe. Eur. J. of Soil Sci. 66:226-238. DOI: 10.1111/ejss.12192

VAN GENUCHTEN M.TH., 1980, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898.

VAN GENUCHTEN M.TH., LEIJ F.J., YATES S.R., 1991, The RETC code for quantifying the hydraulic functions of unsaturated soils Version 1.0. EPA Report 600/2-91/065, U.S. Salinity Laboratory, USDA, ARS, Riverside,CA. https://www.pc-progress.com/Documents/programs/retc.pdf (last accessed on February 26, 2018)

VÁRALLYAY GY., RAJKAI K., 1987, Soil moisture content and moisture potential measuring techniques in Hungarian soil survey. [In:] Proc. of Int. Conf. on ’Measurement of Soil and Plant Water Status'. Vol.1. July 6-10. 1987. Logan, UT. 183-184.

VÁRALLYAY GY., SZŰCS L,. MURÁNYI A., RAJKAI K., ZILAHY P., 1979, Magyarország termőhelyi adottságait meghatározó talajtani tényezők 1:100 000 térképe I. Agrokémia és Talajtan 28:363-384.

VÁRALLYAY GY., SZŰCS L,. MURÁNYI A., RAJKAI K., ZILAHY P., 1980, Magyarország termőhelyi adottságait meghatározó talajtani tényezők 1:100 000 térképe II. Agrokémia és Talajtan 29: 35-76.

VEREECKEN H., SCHNEPF A., HOPMANS J.W., JAVAUX M., OR D., ROOSE T., VANDERBORGHT J., YOUNG M.H., AMELUNG W., AITKENHEAD M., ALLISON S.D., ASSOULINE S., BAVEYE P., BERLI M., BRÜGGEMANN N., FINKE P., FLURY M., GAISER T., GOVERS G., GHEZZEHEI T., HALLETT P., HENDRICKS H.J., FRANSSEN J., HEPPELL J., HORN R., HUISMAN J.A., JACQUES D., JONARD F., KOLLET S. , LAFOLIE F., LAMORSKI K., LEITNER D., MCBRATNEY A., MINASNY B. , MONTZKA C., NOWAK W., PACHEPSKY Y., PADARIAN J., ROMANO N., ROTH K., ROTHFUSS Y., ROWE E.C., SCHWEN A., ŠIMŮNEK J., TIKTAK A., VAN DAM J., VAN DER ZEE S.E.A.T.M., VOGEL H.J., VRUGT J.A., WÖHLING T., YOUNG I.M., 2016, Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone J. 15: 5, 1-57. DOI:10.2136/vzj2015.09.0131

VOGT J. V., SOMMA F.,2013, Drought and Drought Mitigation in Europe. Springer Science & Business Media, Dordrecht, Netherlands. ISBN 9789048155682

WINTER T.C., HARVEY J.W., FRANKE O.L., ALLEY W.M., 1999, Groundwater and surface water: A single resource. U.S. Geological Survey Circular 1139: 1-79.Várallyay Gy., Szűcs L,. Murányi A., Rajkai K.,








ISSN 2080-7686 (print)
ISSN 2300-8490 (online)

 

 

Partnerzy platformy czasopism