Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Nonlinear, nonhomogeneous parametric Neumann problems
  • Strona domowa
  • /
  • Nonlinear, nonhomogeneous parametric Neumann problems
  1. Strona domowa /
  2. Archiwum /
  3. Vol 48, No 1 (September 2016) /
  4. Articles

Nonlinear, nonhomogeneous parametric Neumann problems

Autor

  • Sergiu Aizicovici
  • Nikolaos S. Papageorgiou
  • Vasile Staicu

DOI:

https://doi.org/10.12775/TMNA.2016.035

Słowa kluczowe

Positive solutions, nonlinear nonhomogeneous differential operator, nonlinear regularity, nonlinear maximum principle, bifurcation type result, nodal solutions

Abstrakt

We consider a parametric nonlinear Neumann problem driven by a nonlinear nonhomogeneous differential operator, with a Carathéodory reaction $f$ which is $p$-superlinear in the second variable, but not necessarily satisfying the usual in such cases Ambrosetti-Rabinowitz condition. We prove a bifurcation type result describing the dependence of positive solutions on the parameter $\lambda> 0$, show the existence of a smallest positive solution $\overline{u}_{\lambda}$ and investigate properties of the map $\lambda\mapsto\overline{u}_{\lambda}$. Finally, we show the existence of nodal solutions.

Bibliografia

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc. 196 (915), 2008.

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems, Ann. Mat. Pura Appl. 188 (2009), 679–719.

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Multiple solutions for super-linear p-Laplacian Neumann problems, Osaka J. Math. 49 (2012), 699–740.

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Nodal solutions for (p, 2)-equations, Trans. Amer. Math. Soc. (in print), DOI: http://dx.doi.org/10.1090/S0002-9947-2014-06324-1

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Nodal solutions for nonlinear nonhomogeneous Neumann equations, Topol. Merthods Nonlinear Anal. 43 (2014), 421–438.

L. Cherfils and Y. Ilyasov, On the stationary solutions of generalized reaction-diffusion equations with p and q Laplacian, Commun. Pure Appl. Anal. 4 (2005), 9–22.

S. Cingolani and M. Degiovanni, Nontrivial solutions for p-Laplacian equations with right hand side having p-linear growth, Comm. Partial Differential Equations 30 (2005), 1191–1203.

D. G. Costa and C.A. Magalhães, Existence results for perturbations of the p-Laplacian, Nonlinear Anal. 24 (1995), 409–418.

L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. NonLinéaire 15 (1998), 493–516.

M. Filippakis, A. Kristaly and N. S. Papageorgiou, Existence of five nonzero solutions with constant sign for a p-Laplacian equation, Discrete Contin. Dyn. Syst. 24 (2009), 405–440.

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Chapman &Hall/ CRC Press, Boca Raton, 2006.

L. Gasinski and N. S. Papageorgiou, Bifurcation-type results for nonlinear parametric elliptic equations, Proc. Royal Soc. Edinburgh Sect. A 142 (2012), 515–623.

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Academic Publishers, Dordrecht, The Netherland, 1997.

S. Hu and N. S. Papageorgiou, Nonlinear Neumann equations driven by a nonhomogeneous differential operator, Commun. Pure Appl. Anal. 9 (2010), 1801–1827.

G. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311–361.

G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti–Rabinawitz condition, Nonlinear Anal. 72 (2010), 4602–4613.

S. Marano and N. S. Papageorgiou, On the Neumann problem with p-Laplacian and noncoercitive resonant nonlinearity, Pacific J. Math. 253 (2011), 103–123.

D. Motreanu, V. Motreanu and N.S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (5) (2011), 729–755.

D. Motreanu, V. Motreanu and N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.

D. Motreanu and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann problems, J. Differential Equations 232 (2007), 1–35.

D. Motreanu and N. S. Papageorgiou, Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator, Proc. Amer. Math. Soc. 72 (2010), 4602–4613.

D. Mugnai and N. S. Papageorgiou, Wang’s multiplicity result for superlinear (p,q) equations without the Ambrosetti–Rabinowitz condition, Trans. Amer. Math. Soc. 366 (2014), 4919–4937.

N. S. Papageorgiou and V.D. Radulescu, Qualitative phenomena for some classes of quaselinear elliptic equations with multiple resonance, Appl. Math. Optim. 69 (2014), 393–430.

N. S. Papageorgiou, E. M. Rocha and V. Staicu, A multiplicity theorem for hemivariational inequalities with a p-Laplacian-like differential operator, Nonlinear Anal. 69 (2008), 1150–1163.

P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007.

M. Sun, Multiplicity of solutions for a class of quasilinear elliptic equations at resonance, J. Math. Anal. Appl. 386 (2012), 661–668.

P. Winkert, L∞ -estimates for nonlinear elliptic Neumann boundary value problems, Nonlinear Differential Equations Appl. (NoDEA) 17 (2010), 289–302.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2016-04-24

Jak cytować

1.
AIZICOVICI, Sergiu, PAPAGEORGIOU, Nikolaos S. & STAICU, Vasile. Nonlinear, nonhomogeneous parametric Neumann problems. Topological Methods in Nonlinear Analysis [online]. 24 kwiecień 2016, T. 48, nr 1, s. 45–69. [udostępniono 29.12.2025]. DOI 10.12775/TMNA.2016.035.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 48, No 1 (September 2016)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 2

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa