Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Functions and Vector Fields on C(CP^n)-singular manifolds
  • Strona domowa
  • /
  • Functions and Vector Fields on C(CP^n)-singular manifolds
  1. Strona domowa /
  2. Archiwum /
  3. Vol 46, No 2 (December 2015) /
  4. Articles

Functions and Vector Fields on C(CP^n)-singular manifolds

Autor

  • Alice Kimie Miwa Libardi
  • Vladimir V. Sharko

DOI:

https://doi.org/10.12775/TMNA.2015.081

Słowa kluczowe

Semi-free circle action, manifold, $S^1$-invariant Bott function, Morse number, Poincare-Hopf index

Abstrakt

In this paper we study functions and vector fields with isolated singularities on a $C(\mathbb{C}P^n)$-singular manifold. In general, a$C(\mathbb{C}P^n)$-singular manifold is obtained from a~smooth $(2n+1)$-manifold with boundary which is a disjoint union of complex projective spaces $\mathbb{C}P^n \cup\ldots \cup\mathbb{C}P^n$ and subsequent capture of the cone over each component $\mathbb{C}P^n$ of the boundary. We calculate the Euler characteristic of a compact $C(\mathbb{C}P^n)$-singular manifold $M^{2n+1}$ with finite isolated singular points. We also prove a version of the Poincare-Hopf Index Theorem for an almost smooth vector field with finite number of zeros on a~$C(\mathbb{C}P^n)$-singular manifold.

Bibliografia

M. Agoston, On handle decompositions and diffeomorphisms, Trans. Amer.Math. Soc. 137 (1969), 21–26.

M.A. Aguilar, J.A. Seade and A. Verjovsky, Indices of vector fields and topological invariants of real analytic singularities, J. Reine and Angew. Math. 504 (1998), 159-176.

D. Asimov, Round handle and non-singular Morse-Smale ows, Ann. Math. 102 (1975), no. 1, 41-54.

R. Bott Lecture on Morse theory, old and new, Bull. Amer.Math. Soc. 7 (1982), no. 2, 331-358.

J.-P. Brasselet, J. Seade and T. Suwa, Vector Fields on Singular Varieties, Lecture Notes in Mathematics 2009 (1987).

W. Ebeling and S. Gusein-Zade, On the index of a vector field at an isolated singularity, The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun. 24, Amer. Math. Soc., Providence, RI, (1999), 141-152.

M. Goresky and R. MacPherson, Stratified Morse Theory Ergebnisse der Mathematic und ihre Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988.

H. King and Trotman, Poincare-Hopf theorems on stratified set, Preprint 1996.

H. King and Trotman, Poincare-Hopf theorems on singular spaces, Proc. Lond. Math. Soc. (3) 108 (2014), no. 3, 682-703.

M. Kogan, Existence of perfect Morse functions on spaces with semi-free circle action, J. Sympletic Geom. 1 (2003), no. 3, 829-850.

J. Milnor, Lectures on the h-cobordism Theorem, Mathematics Notes, Princeton University Press 122 (1965).

D. Repovs and V. Sharko, Morse numbers, Ukrainian Math. J. 59 (2012), 559-570.

S. Sarkar, Oriented Cobordism on CP2k+1, arXiv:1011.0554v3[mathAT] 21 Nov 2010.

M.-H. Schwartz, Classes caracteristiques definies par une stratification d'une variete analitique complexe, C.R. Acad. Sci. Paris 260 (1965), 3262-3264, 3535-3537.

M.-H. Schwartz, Champs radiaux et preradiaux associes a une stratification, C.R. Acad. Sci. Paris Ser. I Math. 303 (1986), no. 6, 239-241.

M.-H. Schwartz, Champs radiaux sur une stratification analitique, Travaux en Cours, 39, Hermann Paris, (1991).

J. Seade and T. Suwa, An adjunction formula for local complete intercections, Internal. J. Math. 9 (1998), no. 6.

V. Sharko, Functions on manifolds. Algebraic and topologic aspects, Amer. Math. Soc., vol. 131, 193, Providence, RI, (1993).

Vol 46, No 2 (December 2015)

Pobrania

  • PREVIEW (English)
  • Full text (English)

Opublikowane

2015-12-01

Jak cytować

1.
LIBARDI, Alice Kimie Miwa & SHARKO, Vladimir V. Functions and Vector Fields on C(CP^n)-singular manifolds. Topological Methods in Nonlinear Analysis [online]. 1 grudzień 2015, T. 46, nr 2, s. 697–716. [udostępniono 6.7.2025]. DOI 10.12775/TMNA.2015.081.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 46, No 2 (December 2015)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 465
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa