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FUNCTIONS AND VECTOR FIELDS

ON C(CPn)-SINGULAR MANIFOLDS

Alice K.M. Libardi — Vladimir V. Sharko

Abstract. In this paper we study functions and vector fields with isolated

singularities on a C(CPn)-singular manifold. In general, a C(CPn)-singular

manifold is obtained from a smooth (2n+1)-manifold with boundary which
is a disjoint union of complex projective spaces CPn∪ . . .∪CPn and subse-

quent capture of the cone over each component CPn of the boundary. We

calculate the Euler characteristic of a compact C(CPn)-singular manifold
M2n+1 with finite isolated singular points. We also prove a version of the

Poincaré–Hopf Index Theorem for an almost smooth vector field with finite

number of zeros on a C(CPn)-singular manifold.

1. Introduction

A manifold with isolated singularities is a topological space M which has the

structure of a smooth (C∞) manifold in M \ S, where S is the discrete set of

singular points of M . A diffeomorphism between two such manifolds M and N

is a homeomorphism from M into N such that sends the set of singular points

of M onto the set of singular points of N and is a diffeomorphism outside of

them. We say that M has a cone-like singularity at a (singular) point P ∈ S
if there exists a neighbourhood of the point P diffeomorphic to a cone over
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Algébrica, Geométrica e Diferencial – 2012/24454-8

697



698 A.K.M. Libardi — V.V. Sharko

a smooth manifold WP (WP is called the link at the point P ). In what follows

we assume all manifolds have only isolated cone-like singularities, more precisely

C(CPn)-singular manifolds.

In this work it is considered almost Morse functions on C(CPn)-singular

manifolds and it is given an answer for a particular case of the following un-

solved problem: for any C(CPn)-singular manifold M2n+1 with singular points

m1, . . . ,mk and any collection of almost Morse functions St = π∗(f1), . . . , π∗(fk)

in the neighbourhoods U(m1), . . . , U(mk) find exact values of Morse number

Mλ(M2n+1, St) of index λ. We point out that the notion of almost Morse func-

tion is close related to the notion of a stratified Morse function. (See the classical

book of Goresky–MacPherson [7].)

In this setting, one has the following result:

Theorem 3.10. Let M2n+1, (2n ≥ 5), be a compact simply connected

C(CPn)-singular manifold with singular points m1, . . . ,mk. Let σ be a per-

mutation of (1, . . . , k) and let A (with s points) and B (with k− s points) be the

split of the singular points m1, . . . ,mk into two disjoint sets:

A = mσ(1), . . . ,mσ(s), B = mσ(s+1), . . . ,mσ(k).

We fix a collection of almost Morse functions

St = π∗(f1), . . . , π∗(f1)︸ ︷︷ ︸
s

, π∗(f2), . . . , π∗(f2)︸ ︷︷ ︸
k−s

in the neighbourhoods U(mσ(1)), . . . , U(mσ(s)), U(mσ(s+1)), . . . , U(mσ(k)) respec-

tively, where

f1 =

2n∑
i=1

|zi|2, f2 = 1−
2n∑
i=1

|zi|2.

Then

Mλ(M2n+1, St) = µ(Hλ(M2n+1 \B,A,Z)) + µ(TorsHλ−1(M2n+1 \B,A,Z)),

where µ(H) is the minimal number of generators of the group H.

A (smooth) vector field on a manifold M with isolated singularities is a

(smooth) vector field on the set of regular points of M . The set of singular

points SX of a vector field X on a (singular) manifold M is the union of the set

of usual singular points of X on M (i.e. points at which X tends to zero) and of

the set S of singular points of M itself. For an isolated usual singular point P

of a vector field X there is defined its index indPX.

Inspired on the book “Vector Fields on Singular Varieties” [5] we study vector

fields on manifolds with isolated cone-like singularities and present a proof of

a version of the Poincaré–Hopf Theorem. We recall that M.-H. Schwartz was the

first to consider the index of vector fields on singular varieties. For her purposes,
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it was considered a special class of vector fields, called “radial” in [14], [15], [16].

In [5] it is defined an extension of this index for arbitrary stratified vector fields

varieties, which is referred as “Schwartz index”. This index was first defined by

King and Trotman [8], [9] and later independently in [2], [6], [17].

In our case, we consider (M,P ) a cone-like singularity (i.e. a germ of a ma-

nifold with such a singular point) and let X be a vector field defined on an

open neighbourhood U of the point P . Suppose that X has no singular points

on U \ P . Let V be a closed cone-like neighbourhood of the point P in U

(V = CWP , V ⊂ U). On the cone

(1.1) CWP = (Wp × I)/(WP × 0)(I = [0, 1]),

there is defined a natural vector field d/dt (t is out coordinate on I). Let Xrad

be the corresponding vector field on V . Let X̃ be a (continuous) vector field on

U which coincides with X near the boundary ∂U of the neighbourhood U and

with Xrad on V and has only isolated singular points.

Then we define the radial index Indrad(X;M,P ) of the vector field X at the

point P to be equal to

1 +
∑

IndP̃ X̃P̃∈S
X̃
\{P}

(the sum is over all singular points P̃ of the vector field X̃ except P itself).

This definition is compatible with the Definition 2.1.1 in [5] of the Schwartz

index of an arbitrary vector field on a variety V , both with isolated singularity

at 0. Using the sum of these indices in the singular points of the manifold and

the Poincaré–Hopf index for the rest of zeros of the vector field it is given a proof

for the general case (Theorem 2.1.1. [5]). We prove the version of the Theorem,

step by step, adapting the requirements and using the results of the previous

chapter of the paper.

Theorem 5.1 Let M2n+1 be a C(CPn)-singular manifold with singular points

m1, . . . ,mk. Suppose that on M2n+1 there exists an almost smooth vector field

V (x) with finite number of zeros m1, . . . ,mk, x1, . . . , xl. Then

χ(M2n+1) =

l∑
i=1

ind(xi) +

k∑
i=1

ind(mi).

This paper is organized into 4 sections. In Section 2 we give some results

on manifolds with semi-free S1-action which has only isolated fixed points. In

Section 3 we study functions on C(CPn)-singular manifolds. The main result

of this section is Theorem 3.8. In Section 4 we study vector fields on C(CPn)-

singular manifolds and finally in Section 5 we present the proof of the main result

of this work, which is Theorem 5.1.
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2. Manifold with semi-free S1-action

which has only isolated fixed points

Let M2n+2 be a closed smooth manifold with semi-free S1-action

θ : S1 ×M2n+2 →M2n+2

which has only isolated fixed points. It is known that every isolated fixed point

m of a semi-free S1-action has the following important property: near such

a point the action is equivalent to a certain linear S1 = SO(2)-action on R2n+2.

More precisely, for every isolated fixed point m there exists an open invariant

neighbourhood U of m and a diffeomorphism h from U to an open unit disk

D2n+2 in Cn+1 centered at origin such that h is conjugate to the given S1-action

on U to the S1-action on Cn with weight (1, . . . , 1). We will use both complex

(z1, . . . , zn+1) and real coordinates (x1, y1, . . . , xn+1, yn+1) on Cn = R2n+2 with

zj = xj +
√
−1yj . The pair (U, h) will be called a standard chart at the point m.

The number of fixed points of any smooth semi-free circle action on M2n+2

with isolated fixed points is always even and equals to the Euler characteristic

of the manifold M2n+2 ([12]).

Let M2n+2 be a manifold with finite many fixed points m1, . . . ,m2k. De-

note by

π : M2n+2 →M2n+2/S1

the canonical map. The set of orbits N2n+1 = M2n+2/S1 is a manifold with sin-

gular points π(m1), . . . , π(m2k). It is clear that a neighbourhood of any singular

point is a cone over CPn.

In general, a C(CPn)-singular manifold is obtained from a smooth (2n+ 1)-

manifold with boundary which is a disjoint union of complex projective spaces

CPn ∪ . . . ∪ CPn and subsequent capture of the cone over each component of

the boundary. For this type of C(CPn)-singular manifold parity of the number

of singular points depends on parity of the number n.

Proposition 2.1. Let M2n+1 be a compact C(CPn)-singular manifold with

k singular points. The Euler characteristic of M2n+1 is equal χ(M2n+1) =

k(1− n)/2.

Proof. To prove the proposition we consider the formula of the Euler char-

acteristic: χ(X ∪ Y ) = χ(X) + χ(Y ) − χ(X ∩ Y ), X and Y being simplicial

complexes.

Let m1, . . . ,mk be singular points of M2n+1 and U(m1), . . . , U(mk) respec-

tive closed neighbourhoods each one homeomorphic to the cone over CPn. Con-

sider the smooth manifold with boundary

N2n+1 = M2n+1 \
k⋃
i=1

U(mi).
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Denote by L2n+1 the double of the manifold N2n+1 along the boundary

∂N2n+1

L2n+1 = N2n+1
⋃

∂N2n+1

N2n+1.

From the equation

0 = χ(L2n+1) = 2χ(N2n+1)− kχ(CPn)

follows that the Euler characteristic of the manifold N2n+1 is equal to

χ(N2n+1) =
k(n+ 1)

2
.

Further M2n+1 = N2n+1
⋃

C(CPn)

U(m1) ∪ . . . ∪
⋃

C(CPn)

U(mk) and hence

χ(M2n+1) = χ(N2n+1) + k − kχ(CPn).

Therefore χ(M2n+1) = k(1− n)/2. �

From the formula obtained in Proposition 1.1 we give a simple proof of the

following results without the use of characteristic classes.

Proposition 2.2. (a) For n even, the complex projective space CPn can not

be the boundary of a smooth compact manifold X2n+1;

(b) For n odd, the complex projective space CPn is the boundary of a compact

smooth manifold.

Proof. (a) Suppose that n is an even number and that the complex projec-

tive space CPn is the boundary of a smooth compact manifold X2n+1. Consider

the compact C(CPn)-singular manifold

M2n+1 = C(CPn) ∪CPn X2n+1.

From Proposition 2.1 it should be that the χ(M2n+1) = (1− n)/2. Since the

Euler characteristic is an integer this is a contradiction.

(b) The manifold CPn has homology in dimensions 0, 2, . . . , (n− 1), (n+ 1),

. . . , 2n. Consider on the manifold CPn a proper Morse function f : CPn →
[0, 2n], such that all critical points of index λ lie on f−1(2(λ)). We choose

a submanifold N1 = f−1[0, n−1/2]. It is known ([1]) that N1 is diffeomorphic to

CPn \N1. Consider the manifold CPn× [0, 1] and identify means of the identity

mapping submanifolds of N1
1 = N1 and N2

1 = N1. The manifold N1
1 = N1 belong

to CPn× 0 and the manifold N2
1 = N1 belong to CPn× 1. After smoothing the

corners along the submanifold ∂N1 obtain that CPn is boundary. See also [13].�

Proposition 2.3. Let M2n+1 be a compact C(CPn)-singular manifold with

k singular points. If n is an odd number then the number k of singular points

can be any number. If n is an even number the number k of singular points is

an even number.



702 A.K.M. Libardi — V.V. Sharko

Proof. If n is an odd number, then CPn is the boundary of a compact

smooth manifold N2n+1.

We will denote by ] the connected sum performed in the interior of the

manifold. For any integer k consider the manifold

X2n+1 = N2n+1] . . . ]N2n+1︸ ︷︷ ︸
k

with boundary ∂X2n+1 = CPn ∪ . . . ∪ CPn︸ ︷︷ ︸
k

. Taking the cone over each com-

ponent of the boundary of X2n+1 we get a C(CPn)-singular manifold with k

singular points.

If n is an even number consider the following k times interior connected sum

Y 2n+1 = (CPn × I)] . . . ](CPn × I)︸ ︷︷ ︸
k

.

Taking the cone over each component of the boundary of Y 2n+1 we get

a C(CPn)-singular manifold with 2k singular points.

Now we will show that for an even number n, this is the unique possibility

which can occurs. Suppose that M2n+1 is a compact C(CPn)-singular manifold

with k singular points, where the number k is odd. Let m1, . . . ,mk be singular

points of M2n+1 and U(m1), . . . , U(mk) respective closed neighbourhood each

one homeomorphic to a cone over CPn. Consider the following smooth manifold

N2n+1 = M2n+1 \
k⋃
i=1

U(mi).

with boundary ∂N2n+1 = CPn ∪ . . . ∪ CPn︸ ︷︷ ︸
k

.

We glue (k − 1)/2 pairs of the component of the boundary of the manifold

N2n+1. The result is a smooth compact manifold with boundary CPn. This

is a contradiction, since CPn can not be the boundary of a smooth compact

manifold of dimension 2n+ 1. �

3. Functions on C(CPn)-singular manifolds

Since C(CPn)-singular manifolds are topological spaces we can consider con-

tinuous functions on them and because of the nature of C(CPn)-singular man-

ifolds it is appropriate to consider continuous functions which are smooth on

the complement of the set of singular points. Also it makes sense to study such

functions on a C(CPn)-singular manifold whose singular points of the manifold

are critical points of these functions. More precisely, this means the following.

Let M2n+1 be a compact C(CPn)-singular manifold M2n+1 with singular

points m1, . . . ,mk and U(m1), . . . , U(mk) respective closed neighbourhood each

one homeomorphic to the cone over CPn. For any neighbourhood U(mi) there
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is a disc D2n+2
i and a semi-free action of the circle θ : D2n+2

i ×S1 → D2n+2
i such

that D2n+2
i

π→ D2n+2
i /S1 ≈ U(mi), where π is the canonical projection map.

We introduce in the disc D2n+2
i complex coordinates z1, . . . , zn and recall

that the circle is the set of complex numbers of modulus one. We assume that

the action of the circle on the disc is defined by the formula

θ((z1, . . . , zn), t) = (eitz1, . . . , e
itzn).

Consider an arbitrary S1-invariant smooth function f : D2n+2
i → R with a single

critical point in the center of the disc. For example, let f be given by

f = −|z1|2 − . . .− |zλi
|2 + |zλi+1|2 + . . .+ |zn|2.

Notice that the index of the nondegenerate critical point 0 ∈ D2n+2
i of such

function f is always even ([10]).

Let π∗(f) : U(mi)→ R be the continuous function induced on U(mi) by the

natural map

π : D2n+2
i → D2n+2

i /S1 ≈ U(mi).

It is clear that the function π∗(f) is smooth on the manifold U(mi) \mi.

Definition 3.1. The function π∗(f) : U(mi) → R is called almost smooth

function on the neighbourhood U(mi) with a singularity at the point mi. If f is

given by

f = −|z1|2 − . . .− |zλi |2 + |zλi+1|2 + . . .+ |zn|2

then the function π∗(f) : U(mi) → R is called almost Morse function on the

neighbourhood U(mi).

Lemma 3.2. Assume that M2n+1 is a compact C(CPn)-singular manifold

with singular points m1, . . . ,mk and U(m1), . . . , U(mk) respective closed neigh-

bourhood each one homeomorphic to a cone over CPn. Let π∗(fi) : U(mi) → R
be an almost smooth function on the neighbourhood U(mi) with a singularity at

the point mi. Then there exists a continuous function f on M2n+1 such that

f = π∗(fi) on Û(mi) ⊂ U(mi) and f is smooth on M2n+1 \
k⋃
i=1

mi .

Proof. The proof of this assertion follows from the theorem on the extension

of a smooth function on a closed set. Consider the partition of unity W1, . . . ,Wk,

V1, . . . , Vl such that mi ∈ Wi ⊂ U(mi) and Vj contains no points m1, . . . ,mk.

Let π∗(f1), . . . , π∗(fk), g1, . . . , gl be smooth functions on W1, . . . ,Wk, V1, . . . , Vl,

respectively. Then

π∗(f1 |W1) + . . .+ π∗(fk |Wk) + g1 | V1 . . .+ gl | Vl

is the desired function on M2n+1. �
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Definition 3.3. A function f : M2n+1 → R is called almost smooth function

on the C(CPn)-singular manifold M2n+1 if f is almost smooth function on the

neighbourhoods U(mi) of singular pointsmi ofM2n+1 and f is a smooth function

on the smooth manifold M2n+1 \
⋃
i

mi.

From Lemma 3.2 follows that on any compact C(CPn)-singular manifold

M2n+1 with singular points m1, . . . ,mk there exists an almost smooth function.

Corollary 3.4. Assume that M2n+1 is a compact C(CPn)-singular mani-

fold with singular points m1, . . . ,mk. Suppose that U(m1), . . . , U(mk) are their

closed neighbourhood each one homeomorphic to a cone over CPn. Let π∗(fi) :

U(mi) → R be an almost Morse function in the neighbourhood U(mi). Then

there exists a continuous function f in M2n+1 such that f = π∗(fi) on U(mi)

and f is a Morse function in M2n+1 \
k⋃
i=1

mi.

Proof. By Lemma 3.2 there exists a continuous function f on M2n+1 such

that f = π∗(fi) on U(mi) and f is smooth on M2n+1 \
k⋃
i=1

mi. It is known,

that Morse functions constitute an open and dense set in the space of smooth

functions on a manifold (see [11]). Consider a small perturbation of function f ,

which is fixed on the sets
k⋃
i=1

Int(U(mi)). The resulting function will satisfy the

necessary conditions. �

Definition 3.5. A function f : M2n+1 → R is called almost Morse function

on the C(CPn)-singular manifold M2n+1 if f is an almost Morse function in the

neighbourhoods U(mi) of singular points mi of M2n+1 and f is a Morse function

on the smooth manifold M2n+1 \
⋃
i

mi.

From Corollary 3.4 follows that on any compact C(CPn)-singular manifold

M2n+1 with singular points m1, . . . ,mk there exists an almost Morse function.

The number of critical points of an almost Morse function is dependent of the

structure of such function in the neighbourhood of singular points of the C(CPn)-

singular manifold. Let us examine this issue in more detail.

Definition 3.6. Let f be an almost Morse function on the C(CPn)-singular

manifold M2n+1 with singular points m1, . . . ,mk. Denote by π∗(fi) : U(mi)→ R
its almost Morse function in the neighbourhood U(mi) of singular point mi

of M2n+1. The state of the almost Morse function f is the collection π∗(f1), . . .,

π∗(fk) of all almost Morse functions in the neighbourhood U(mi) which we will

be denoted by St(f) = π∗(f1), . . . , π∗(fk).

Remark 3.7. It follows from Corollary 3.4 that for every C(CPn)-singular

manifold M2n+1 with singular points m1, . . . ,mk and any collection of almost
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Morse functions π∗(f1), . . . , π∗(fk) in the neighbourhoods U(m1), . . . , U(mk)

there exists an almost Morse function f on M2n+1 with state

St(f) = π∗(f1), . . . , π∗(fk).

Definition 3.8. Let M2n+1 be a C(CPn)-singular manifold with singular

points m1, . . . ,mk and their cone neighbourhoods U(m1), . . . , U(mk). Fix any

collection of almost Morse functions St = π∗(f1), . . . , π∗(fk) in neighbourhoods

U(m1), . . . , U(mk). The Morse number Mλ(M2n+1, St) of index λ is the mini-

mum number of critical points of index λ taken over all almost Morse functions

f on M2n+1 with state St = π∗(f1), . . . , π∗(fk).

Consider the case where M2n+1, (2n ≥ 5), is a compact simply connected

C(CPn)-singular manifold. Recall that for a simply connected smooth manifold

we can calculate the Morse number via its homology groups. More precisely,

if we consider a closed manifold Nn and Morse functions f : Nn → R then to

count the Morse number for the class of such functions we can use the homology

group Hj(N
n,Z).

If we consider a compact manifold Nn with boundary ∂Nn = ∂1N
n ∪ ∂2Nn

and Morse functions f : (Nn, ∂1N
n, ∂2N

n) → R such that f−1(0) = ∂1N
n and

f−1(1) = ∂2N
n then to calculate the Morse numbers for this class of functions

we use the group Hj(N
n, ∂1N

n,Z) (see [18]).

Let M2n+1 (2n ≥ 5) be a compact simply connected C(CPn)-singular man-

ifold with singular points m1, . . . ,mk. Let σ be a permutation of (1,. . . ,k). We

split the singular point m1, . . . ,mk into two disjoint sets A and B consisting of

s and k − s points, respectively:

A = mσ(1), . . . ,mσ(s), B = mσ(s+1), . . . ,mσ(k).

The case when A or B is empty set is not excluded. Consider the homology

groups Hj(M
2n+1 \B,A,Z).

Remark 3.9. If τ is another permutation of (1,. . . ,k) and

Ã = mτ(1), . . . ,mτ(s), B̃ = mτ(s+1), . . . ,mτ(k)

is another splitting of the singular points m1, . . . ,mk into two disjoint sets Ã

and B̃ then, in general,

Hj(M
2n+1 \B,A,Z) 6= Hj(M

2n+1 \ B̃, Ã,Z).

Now, we state the main result of this section.

Theorem 3.10. Let M2n+1, (2n≥5), be a compact simply connected C(CPn)

-singular manifold with singular points m1, . . . ,mk. Let σ be a permutation of
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(1, . . . , k) and let A (with s points) and B (with k − s points) be the split of the

singular points m1, . . . ,mk into two disjoint sets:

A = mσ(1), . . . ,mσ(s), B = mσ(s+1), . . . ,mσ(k).

We fix a collection of almost Morse functions

St = π∗(f1), . . . , π∗(f1)︸ ︷︷ ︸
s

, π∗(f2), . . . , π∗(f2)︸ ︷︷ ︸
k−s

in the neighbourhoods U(mσ(1)), . . . , U(mσ(s)), U(mσ(s+1)), . . . , U(mσ(k)), res-

pectively, where

f1 =

2n∑
i=1

|zi|2, f2 = 1−
2n∑
i=1

|zi|2.

Then

Mλ(M2n+1, St) = µ(Hλ(M2n+1 \B,A,Z)) + µ(TorsHλ−1(M2n+1 \B,A,Z)),

where µ(H) is the minimal number of generators of the group H.

Proof. Let UA and UB be a disjoint union of neighbourhoods of singular

points belonging to A and B, respectively. It is clear that the space M2n+1 \
(A∪B) is diffeomorphic to M2n+1

1 = M2n+1 \ (UA∪UB). It is known ([18]) that

Morse number of index λ for Morse functions on cobordism (M2n+1
1 , ∂A, ∂B)

f : (M2n+1
1 , ∂A, ∂B)→ ([0, 1], 0, 1)

is equal to

Mλ(M2n+1, ∂A, ∂B)

= µ(Hλ(M2n+1 \ UB), UA,Z)) + µ(TorsHλ−1(M2n+1 \ UB), UA,Z)).

But it is the same with

Mλ(M2n+1, St) = µ(Hλ(M2n+1\B,A,Z))+µ(TorsHλ−1(M2n+1\B,A,Z)). �

4. Vector fields on C(CPn)-singular manifolds

A compact C(CPn)-singular manifold M2n+1 can be equipped with a Rie-

mannian metric as follows. Let m1, . . . ,mk be singular points of manifold M2n+1

and U(m1), . . . , U(mk) closed neighbourhoods each one homeomorphic to a cone

over CPn, respectively. It is clear that the manifold Vi = U(mi) \mi is diffeo-

morphic to CPn × R+ (R+ denotes the set of non-negative real numbers). Let

ρ be a Riemannian metric on CPn and dx2 metric on R. On the manifold Vi
Riemannian metric is set by using η = ρ ⊕ dx2. We consider in the manifold

M2n+1 \
k⋃
i=1

mi the Riemannian metric η of manifold Vi.
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Definition 4.1. Let M2n+1 be a compact C(CPn)-singular manifold with k

singular pointsm1, . . . ,mk. A vector field V (x) onM2n+1 is called almost smooth

vector field if V (x) is smooth on the smooth manifold M2n+1 \
k⋃
i=1

mi and is zero

outside of this manifold. In addition, for each sequence of points x1, . . . , xn, . . .

tending to singular points mi, . . . ,mk (i = 1, . . . , k) the sequence of norms of

vector ‖V (x1)‖, . . . , ‖V (xn)‖, . . . converges to zero in some Riemannian metric

on M2n+1.

Proposition 4.2. Let M2n+1 be a C(CPn)-singular manifold with singular

points m1, . . . ,mk. Then on M2n+1 there exists an almost smooth vector field

V (x).

Proof. By Corollary 3.2 on a C(CPn)-singular manifold M2n+1 there exists

an almost smooth function f . We fix a Riemannian metric ρ on M2n+1 and

consider on smooth manifold M2n+1 \
k⋃
i=1

mi the vector field grad(f). We set

V (x) =


grad(f) on M2n+1 \

k⋃
i=1

mi,

0 at the points m1, . . . ,mk.

By construction, the field V (x) will be almost smooth vector field on C(CPn)-

singular manifold M2n+1. �

Remark 4.3. If an almost smooth function f has a finite number of critical

points then the vector field V (x) will have a finite number of points where V (x)

is zero.

Let V (x) be an almost smooth vector field on C(CPn)-singular manifold

with singular points m1, . . . ,mk. Suppose that the vector field V (x) have points

m1, . . . ,mk as isolated singular points. We want to determine the index of the

vector field V (x) in the singular point mi.

In what follows we will call zero (resp. zeros) for singular point (resp. singular

points) of a vector field.

Let V (x) be a smooth vector field on a smooth compact manifold N2m+1

with boundary with a finite number of points C(CPn) in the interior of the

manifold N2m+1 where V (x) is zero. Suppose that the restriction of the field

V (x) on the boundary ∂N2m+1 of the manifold N2m+1 is outwardly directed to

the manifold N2m+1. Recall the definition of the index of a zero of the vector

field V (x) on a smooth manifold N2m+1.

Let D2m+1
ε (ni) be the ball of radius ε centered at the point ni such that the

vector field V (x) has no zeros in it except at ni. Let S2m
ε be the (2m)-dimensional
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sphere S2m
ε = ∂D2m+1

ε (ni). The vector field V (x) defines a map

V (x)

‖V (x)‖
: S2m

ε → S2m
1 .

The index ind(ni)V (x) of the vector field V (x) at the point ni is defined as the

degree of the map V (x)/‖V (x)‖. One can see that it is independent of the chosen

coordinates around the point ni.

Theorem 4.4 (Poincare–Hopf [5]).

χ(N2m+1) =

m∑
i=1

(−1)irank(Hi(N
2m+1,Q)) =

l∑
i=1

ind(ni)V (x)

where Hi(N
2m+1,Q) is i-th homology group of the manifold N2m+1.

This formula implies that the index of the point nio is equal to

ind(nio)V (x) = χ(N2m+1)−
l∑

i=1,i6=io

ind(ni)V (x).

This formula is used to define the index of the zero m of a vector field on

a C(CPn)-singular manifold M2n+1 such that m is a singular point of M2n+1.

Definition 4.5. Let N2m+1 be a cone over C(CPn) and let V (x) be an

almost smooth vector field on N2m+1 such that the singular point n ∈ N2m+1

is an isolated zero of V (x), the field V (x) has finite number of zeros n1, . . . , nl
and such zeros belong to N2m+1 \ ∂N2m+1 and V (x) on the boundary of the

manifold N2m+1 is pointed out to the manifold N2m+1. The index ind(n)V (x)

of the point n of the vector field V (x) is defined as the

ind(n)V (x) = χ(N2m+1)−
l∑
i=1

ind(ni)V (x).

For definition of the index at a zero of an arbitrary vector field on a cone over

C(CPn) we will need some additional constructions. First we prove the lemma.

Lemma 4.6. Let N2m+1 be a cone over C(CPn) and let V (x) be an almost

smooth vector field on N2m+1 such that the singular point n ∈ N2m+1 is an

isolated zero of V (x). Then on singular manifold N2m+1 there exists an almost

smooth vector field W (x) such that:

(a) W (x) coincides with the vector field V (x) in some neighbourhood of sin-

gular point n ∈ N2m+1;

(b) W (x) has finite number of zeros and such zeros belong to N2m+1 \
∂N2m+1;

(c) W (x) on the boundary of the manifold N2m+1 is pointed out to the ma-

nifold N2m+1.
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Proof. Since n ∈ N2m+1 is an isolated zero of V (x) then there is a neigh-

bourhood U(n) of the point n in which there are no other zeros of the vector

field V (x). Denote by U(∂N2m+1) some open neighbourhood of boundary of

N2m+1 such that U(n) ∩ U(∂Nm) = ∅. We construct on the smooth manifold

Ñ = N2m+1 \ n a smooth function ϕ : Ñ → [0, 1] such that:

• ϕ|U(n) = 1;

• ϕ|U(∂N2m+1) = 0.

Consider on N2m+1 a smooth vector field V1(x) such that

• V1(x) on the boundary of the manifold N2m+1 is nonzero and pointed

out to N2m+1;

• V1(x)|U(n) = 0.

We take on the C(CPn)-singular manifold N2m+1 the almost smooth vec-

tor field W1(x) = V1(x) + ϕ(x) · V (x). By construction W1(x) coincides with

the vector field V (x) on neighbourhood U(n) of singular point n ∈ N2m+1 and

the vector field W 2x+1
1 on the boundary of the manifold N2m+1 is nonzero and

pointed out to the manifold N2m+1. With small perturbation of vector field

W1(x) which will be fixed in the neighbourhoods U(n) and U(∂N2m+1) we con-

struct the almost smooth vector field W (x) which will have a finite number of

points inside of the C(CPn)-singular manifold N2m+1 where W (x) is zero. �

Remark 4.7. In fact we can assume that the index of zeros of the vector

field W (x) on manifold N2m+1 \ U(n) is ±1.

Proof. Indeed, if all zeros of the vector field W (x) are isolated and this

number is finite, then a small perturbation of W (x) on smooth manifold N2m+1\
U(n) became non-degenerate. �

Definition 4.8. Let N2m+1 be a cone over C(CPn) and let V (x) be an

almost smooth vector field on N2m+1 such that the singular point n ∈ N2m+1 is

an isolated zero of V (x). The index of the zero n of the vector field V (x) is the

number

ind(n)V (x) = χ(N2m+1)−
l∑
i=1

ind(ni)W (x).

where n1, . . . , nl are all zeros belonging to N2m+1 \ U(n) of the almost smooth

vector field W (x) given by Lemma 4.5.

We must show that so defined index at the singular point n ∈ N2m+1 does

not depend on the choice of the vector field W (x). We prove the following lemma.

Lemma 4.9. Let N2n+1 be a smooth closed manifold and let V (x) and W (x)

be smooth vector fields on N2n+1 × [0, 1) such that:

(a) The vector field W (x) coincides with the vector field V (x) on N2n+1 ×
[1− ε, 1), where 0 < ε < 1;
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(b) Vector fields V (x) and W (x) have finite number of zeros;

(c) Vector fields V (x) and W (x) are not zero on the boundary N2n+1× 0 of

the manifold N2n+1×[0, 1) and pointed out to the manifold N2n+1×[0, 1).

Let x1, . . . , xs and y1, . . . , yt be zeros of the vector fields V (x) and W (x) respec-

tively. Then
s∑
i=1

ind(xi)V (x) =

t∑
i=1

ind(yi)W (x).

Proof. Let δ > 0 such that on collar K = N2n+1 × [1 − δ, 1) ⊂ N2n+1 ×
[1 − ε, 1) there is no zeros of vector fields V (x) and W (x). Consider smaller

collar K1 = N2n+1 × [1 − δ1, 1) ⊂ K. We construct on the smooth manifold

N2n+1 × [0, 1) smooth function ϕ : N2n+1 × [0, 1)→ [0, 1] such that:

• ϕ|K1
= 1;

• ϕN2n+1×[0,1)\N2n+1×(1−δ,1) = 0.

Consider on manifold N2n+1× [0, 1) smooth unit vector field G(x) = d/dt which

is tangent to the lines y× [0, 1) where y ∈ N2n+1× 0. It is clear that vector field

G(x) is transverse to any submanifold N2n+1 × t0, where t0 ∈ [0, 1). Form the

smooth vector fields

F1(x) = ϕ(x) ·G(x) + (1− ϕ(x)) · V (x),

F2(x) = ϕ(x) ·G(x) + (1− ϕ(x)) ·W (x).

By construction, vector fields F1(x) and F2(x) coincide on the set N2n+1 × [1−
ε, 1) \K. On the set K1 vector fields F1(x) and F2(x) coincide with G(x). The

vector field F1(x) on the set

N2n+1 × [0, 1) \N2n+1 × (1− δ, 1)

coincides with vector field V (x) and the vector field F2(x) on the set

N2n+1 × [0, 1) \N2n+1 × (1− δ, 1)

coincides with vector field W (x). Consider small perturbation H1 of vector field

F1 which is fixed on the set N2n+1 × [0, 1) \ N2n+1 × (1 − δ, 1) and on K1

and such that on the set of K \K1 the vector field H1 has only isolated zeros

z1, . . . , zp. Similarly, let H2 a small perturbation of vector field F2 which is fixed

on N2n+1 × [0, 1) \ N2n+1 × (1 − δ, 1) and on K1 and such that on the set of

K \K1 vector field H2 has only isolated zeros. We can assume that H1 = H2 on

K \K1.

Consider a restriction of the vector fields H1 and H2 on manifold

D = N2n+1 × [0, 1) \N2n+1 × (1− δ1, 1).

By construction vector fields H1 and H2 are transversal to manifold N2n+1 ×
(1− δ1) and pointed out to the manifold D. On the set K \K1 vector fields H1
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and H2 have the same zeros z1, . . . , zp. Hence for vector fields H1 and H2 we

have that

s∑
i=1

ind(xi)H1(x) +

p∑
j=1

ind(zj)H1(x) =

t∑
i=1

ind(yi)H2(x) +

p∑
j=1

ind(zj)H2(x),

which implies that

s∑
i=1

ind(xi)H1(x) =

t∑
i=1

ind(yi)H2(x).

But by the construction

ind(xi)H1(x) = ind(xi)V (x) and ind(yi)H2(x) = ind(yi)W (x),

therefore
s∑
i=1

ind(xi)V (x) =

t∑
i=1

ind(yi)W (x). �

Proposition 4.10. Let N2m+1 be a cone over C(CPn) and let V (x) be an

almost smooth vector field on N2m+1 such that the singular point n ∈ N2m+1

is an isolated zero of V (x). The index of the zero n of the vector field V (x) in

Definition 4.6 does not depend of the almost smooth vector field W (x).

Proof. Let V (x) be an almost smooth vector field on N2m+1 such that

the singular point n ∈ N2m+1 is an isolated zero of V (x). By the Lemma 4.7

we can construct on N2m+1 two almost smooth vector fields W1(x) and W2(x).

It is clear that manifold N2m+1 \ n is diffeomorphic to GI × [0, 1), where GI is

diffeomorphic to ∂N2m+1. Consider restriction vector fields W1(x) and W2(x) on

the manifold N2m+1\n. Let x1, . . . , xs and y1, . . . , yt be zeros of the vector fields

W1(x) and W2(x) on the manifold N2m+1 \ n respectively. Then by definition

of the index of the zero n of the vector field V (x) is the number

ind(n)V (x) = χ(N2m+1)−
s∑
i=1

ind(xi)W1(x).

or the number

ind(n)V (x) = χ(N2m+1)−
t∑
i=1

ind(yi)W2(x).

From Lemma 4.7 we have that

s∑
i=1

ind(xi)W1(x) =

t∑
i=1

ind(yi)W2(x),

which implies the independence of the index of the zero n of the almost smooth

vector field on N2m+1. �
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5. Proof of the Poincare–Hopf theorem

Theorem 5.1. Let M2n+1 be a C(CPn)-singular manifold with singular

points m1, . . . ,mk. Suppose that on M2n+1 there exists an almost smooth vector

field V (x) with finite number of zeros m1, . . . ,mk, x1, . . . , xl. Then

χ(M2n+1) =

l∑
i=1

ind(xi) +

k∑
i=1

ind(mi).

Proof. We consider first the simple case. Let U(mi) be a closed neigh-

bourhood of singular point mi such that U(mi) is homeomorphic to a cone over

C(CPn) and ∂U(mi) is a smooth submanifold of M2n+1 \
k⋃
i=1

mi (i = 1, . . . , k).

Suppose that an almost smooth vector field V (x) is transverse to ∂U(mi) and

pointed out to U(mi). In addition, assume that the set of zeros of V (x) is divided

into disjoint subsets

A = {x01, . . . , x0s0} and Bi = {xi1, . . . , xisi} (i = 1, . . . , k),

where s0 + . . .+ sk = l and A ⊂Mn \
k⋃
i=1

U(mi) and Bi ⊂ U(mi). Note that A

or Bi may be empty. We have that

χ(M2n+1) = χ

(
Mn \

k⋃
i=1

U(mi)

)
+ χ

( k⋃
i=1

U(mi)

)
− χ

( k⋃
i=1

∂U(mi)

)
.

Consider restriction of vector field V (x) on the smooth manifold with boundary

N2n+1 = Mn \
k⋃
i=1

U(mi)

and denote this restriction by V (x). Of course the subset A of zeros of vector

field V (x) coincides with the set of all zeros of vector field V (x). For vector field

V (x) we have from

χ(N2n+1)− χ(∂N2n+1) =

s0∑
j=1

ind(x0j )

(see [5]). Let Ṽi(x) be the restriction of vector field V (x) on the C(CPn)-singular

manifold U(mi). For vector field Ṽi(x) using the Definition 4.4 we have

χ(U(mi)) = ind(mi) +

si∑
j=1

ind(xij).

and therefore

χ

( k⋃
i=1

U(mi)

)
=

k∑
i=1

ind(mi) +

k∑
i=1

( si∑
j=1

ind(xij)

)
.
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It is clear that

s0∑
j=1

ind(x0j ) +

k∑
i=1

ind(mi) +

k∑
i=1

( si∑
j=1

ind(xij)

)

= χ(N2n+1)− χ(∂N2n+1) + χ

( k⋃
i=1

U(mi)

)
.

But by construction

χ(M2n+1) = χ(N2n+1)− χ(∂N2n+1) + χ

( k⋃
i=1

U(mi)

)
and therefore

χ(M2n+1) =

l∑
i=0

ind(xi) +

k∑
i=1

ind(mi).

Suppose now that the almost smooth vector field V (x) is nontransverse to

∂U(mi). Without loss of generality, we can assume that the vector field V (x)

has no zeros in the neighbourhood U(mi), with the exception of the singular

point mi. This may be achieved by reducing neighbourhood U(mi). We will

construct on U(mi) a new almost smooth vector field Vi,1(x) such that:

• Vi,1(x) coincides with the vector field V (x) on the neighbourhood of

∂U(mi) and at some neighbourhood of the point mi;

• Vi,1(x) will be transverse to the boundary of the smallest neighbourhood

U1(mi) ⊂ U(mi) of the point mi;

• Vi,1(x) has finite number of zeros yi1, . . . , y
i
ri ,mi on U(mi);

• The sum
r∑
i=1

ind(yi) = 0.

As before, let Ṽi(x) be the restriction of vector field V (x) on C(CPn)-singular

manifold U(mi). It is clear that the smooth manifold W (mi) = U(mi) \mi is

diffeomorphic to Gi × [0, 1) (where Gi is diffeomorphic to ∂U(mi)). Consider in

W (mi) smooth submanifold Ti,1 = Gi × t1, where t1 ∈ (0, 1/2) and let ṼTi,1
(x)

denote the restriction of the vector field Ṽi(x) on submanifold Ti,1. Cut the

manifold W (mi) along the submanifold Ti,1. As a result, we obtain

W (mi) \ Ti,1 = Wi,1 ∪Wi,2.

By construction the smooth manifold Wi,1 is diffeomorphic to Gi × [0, t1) and

the smooth manifold Wi,2 is diffeomorphic to Gi × (t1, 1). Denote by

Zi,1 = W i,1 = Gi × [0, t1] and Zi,2 = W i,2 \Gi × 1 = Gi × [t1, 1).

It is clear, that on manifolds Zi,1 and Zi,2 there are vector fields ṼZi,1
(x) and

ṼZi,2
(x) respectively, obtained by restrictions on Zi,1 and Zi,2 of the vector field

Ṽi(x). Consider manifold Qi = Gi × [t1, 2t1] and we will construct on Qi the
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vector field ṼQi
(x) putting ṼQi

(x)|Gi×t = ṼTi,1
(x), (t ∈ [t1, 2t1]). Glue together

the components of the boundary of manifold Qi using the identity map. As

result we obtain a smooth manifold Qi,1 = Gi × S1 and a non-singular vector

field ṼQi,1
(x) on it.

Let points a, b ∈ S1 and consider the fibres Fa = GI × a and Fb = GI × b.
Denote by U(Fa) some open neighbourhood of Fa in manifold Qi,1 such that

U(Fa)∩Fb = ∅. With small perturbation of vector field ṼQi,1
(x) on the manifold

Qi,1 new vector field V̂Qi,1(x) is obtained such that:

• V̂Qi,1
(x) coincides with the vector field ṼQi,1

(x) on the neighbourhood

U(Fa);

• V̂Qi,1
(x) is transverse to Fb in the desired direction;

• V̂Qi,1
(x) has finite number of zeros yi1, . . . , y

i
ri .

Since the Euler characteristic of the manifold Qi,1 is zero then

r∑
j=1

ind(yj) = 0.

If we cut the manifold Qi,1 along the fibre Fa then we obtain an open manifold

Pi diffeomorphic to Gi× (t1, 2t1). Denote by P̂i = P i ≈ Gi× [t1, 2t1] the closure

of the manifold Pi. It is clear that vector field V̂Qi,1
(x) on the manifold Qi,1

determines a vector field V̂P̂i
(x) on the manifold P̂i. Glue together the manifolds

Zi,1 and Zi,2 with help of the manifold P̂i which we denote by Û(mi). It is

clear that G1, . . . , Gk-singular manifold U(mi) is homeomorphic to Û(mi). By

construction, vector fields ṼZi,1
(x), ṼZi,2

(x) and V̂P̂i
(x) “stapled” into one almost

smooth vector field Vi,1(x) on the manifold Û(mi). For any index i = 1, . . . , k

do a surgery on U(mi) of vector field V (x), in another words, using the vector

fields Vi,1(x) change vector field V (x) on manifold Mn to a vector field V1(x). By

construction the vector field V1(x) have zeros m1, . . . ,mk, x1, . . . , xl, y
i
1, . . . , y

i
ri

on the C(CPn)-singular manifold Mn and satisfies the transversality condition

in the desired direction. Therefore as in the beginning of the proof we have that

χ(M2n+1) =

l∑
i=1

ind(xi) +

k∑
i=1

( ri∑
j=1

ind(yij)

)
+

k∑
i=1

ind(mi).

But
ri∑
j=1

ind(yij) = 0 for any i and the theorem is proved. �
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