Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Infinitely many solutions for systems of multi-point boundary value problems using variational methods
  • Strona domowa
  • /
  • Infinitely many solutions for systems of multi-point boundary value problems using variational methods
  1. Strona domowa /
  2. Archiwum /
  3. Vol 42, No 1 (September 2013) /
  4. Articles

Infinitely many solutions for systems of multi-point boundary value problems using variational methods

Autor

  • John R. Graef
  • Shapour Heidarkhani
  • Lingju Kong

Słowa kluczowe

Infinitely many solutions, multi-point boundary value problems, multiplicity results, critical point theory

Abstrakt

In this paper, we obtain the existence of infinitely many classical solutions to the multi-point boundary value system $$ \cases -(\phi_{p_i}(u'_{i}))'=\lambda F_{u_{i}}(x,u_{1},\ldots,u_{n}),\qquad t\in (0,1),\\ \noalign{\medskip} \displaystyle u_{i}(0)=\sum_{j=1}^m a_ju_i(x_j),\quad u_{i}(1)=\sum_{j=1}^m b_ju_i(x_j), \endcases \quad i=1,\ldots,n. $$ Our analysis is based on critical point theory.

Pobrania

  • FULL TEXT (English)

Opublikowane

2013-04-22

Jak cytować

1.
GRAEF, John R., HEIDARKHANI, Shapour & KONG, Lingju. Infinitely many solutions for systems of multi-point boundary value problems using variational methods. Topological Methods in Nonlinear Analysis [online]. 22 kwiecień 2013, T. 42, nr 1, s. 105–118. [udostępniono 15.12.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 42, No 1 (September 2013)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa