Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Almost homoclinic solutions for the second order Hamiltonian systems
  • Strona domowa
  • /
  • Almost homoclinic solutions for the second order Hamiltonian systems
  1. Strona domowa /
  2. Archiwum /
  3. Vol 32, No 1 (September 2008) /
  4. Articles

Almost homoclinic solutions for the second order Hamiltonian systems

Autor

  • Joanna Janczewska

Słowa kluczowe

Action functional, almost homoclinic solution, Hamiltonian system

Abstrakt

The second order Hamiltonian system $\ddot{q}+V_{q}(t,q)=f(t)$, where $t\in\mathbb R$ and $q\in\mathbb R^n$, is considered. We assume that a potential $V\in C^{1}(\mathbb R\times\mathbb R^n,\mathbb R)$ is of the form $V(t,q)=-K(t,q)+W(t,q)$, where $K$ satisfies the pinching condition and $W_{q}(t,q)=o(|q|)$, as $|q|\to 0$ uniformly with respect to $t$. It is also assumed that $f\in C(\mathbb R,\mathbb R^n)$ is non-zero and sufficiently small in $L^{2}(\mathbb R,\mathbb R^n)$. In this case $q\equiv 0$ is not a solution. Therefore there are no orbits homoclinic to $0$ in a classical sense. However, we show that there is a solution emanating from $0$ and terminating at $0$. We are to call such a solution almost homoclinic to $0$. It is obtained here as a weak limit in $W^{1,2}(\mathbb R,\mathbb R^n)$ of a sequence of almost critical points.

Pobrania

  • FULL TEXT (English)

Opublikowane

2008-09-01

Jak cytować

1.
JANCZEWSKA, Joanna. Almost homoclinic solutions for the second order Hamiltonian systems. Topological Methods in Nonlinear Analysis [online]. 1 wrzesień 2008, T. 32, nr 1, s. 131–137. [udostępniono 1.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 32, No 1 (September 2008)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa