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ALMOST HOMOCLINIC SOLUTIONS
FOR THE SECOND ORDER HAMILTONIAN SYSTEMS

Joanna Janczewska

Abstract. The second order Hamiltonian system q̈ + Vq(t, q) = f(t),

where t ∈ R and q ∈ Rn, is considered. We assume that a potential

V ∈ C1(R × Rn, R) is of the form V (t, q) = −K(t, q) + W (t, q), where K
satisfies the pinching condition and Wq(t, q) = o(|q|), as |q| → 0 uniformly

with respect to t. It is also assumed that f ∈ C(R, Rn) is non-zero and suf-

ficiently small in L2(R, Rn). In this case q ≡ 0 is not a solution. Therefore
there are no orbits homoclinic to 0 in a classical sense. However, we show

that there is a solution emanating from 0 and terminating at 0. We are to

call such a solution almost homoclinic to 0. It is obtained here as a weak
limit in W 1,2(R, Rn) of a sequence of almost critical points.

1. Introduction

In this paper the existence of almost homoclinic orbits for some time-depen-
dent Hamiltonian systems will be studied. Consider

(1.1) q̈ + Vq(t, q) = f(t),
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where t ∈ R, q ∈ Rn and functions V : R × Rn → R and f : R → Rn satisfy the
following conditions:

(H1) V (t, q) = −K(t, q) + W (t, q), where K, W : R × Rn → R are C1-maps,
and f is non-zero and continuous,

(H2) there are constants b1, b2 > 0 such that for all (t, q) ∈ R× Rn,

b1|q|2 ≤ K(t, q) ≤ b2|q|2,

(H3) Kq(t, q) is Lipschitzian in q in a neighbourhood of 0 ∈ Rn uniformly
with respect to t,

(H4) Wq(t, q) = o(|q|), as |q| → 0 uniformly with respect to t,
(H5) there are M > 0, µ ≥ 2 and % > 0 such that for every t ∈ R and

0 < |q| ≤ %,
0 < W (t, q) ≤ M |q|µ.

Here and subsequently, ( · , · ): Rn×Rn → R denotes the standard inner product
in Rn and | · |: Rn → [0,∞) is the induced norm. Set

b1 := min{1, 2b1} and r := min{1, %}.

Finally, suppose that

(H6) b1 − 2M > 0 and f satisfies the inequality:( ∫ ∞

−∞
|f(t)|2 dt

)1/2

<

√
2

4
r(b1 − 2M).

As an easy example of K and W satisfying conditions (H1)–(H5) and such that
K is not a quadratic function, we can take W (t, x) = x4/16 and K(t, x) =
x2 + ln(1 + x2), where t, x ∈ R. One can immediately check that in this case
b1 = 1, b2 = 2, µ = 4 and M = 1/16. Another example is the following. W is as
above and K is given by

K(t, x) =


(

1 +
1

1 + x2

)
x2 if x ≥ 0,(

1 +
2

1 + x2

)
x2 if x < 0.

Then b1 = 1 and b2 = 3.
The existence of homoclinic orbits both for the second order Hamiltonian

systems and for the first order ones has been studied by many authors and the
literature on this subject is vast. In particular, the second order systems were
considered in [1], [2], [4], [5], [11], [12], and those of the first order in [3], [6],
[7], [13], [14]. This work joins up with our earlier ones written together with
M. Izydorek (see [8] and [9]). We studied there the system (1.1) with a potential
V which was T -periodic in t.
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The Hamiltonian system (1.1) does not possess a solution homoclinic to 0 in
a classical meaning, because q ≡ 0 is not a solution of this system. However,
we can still ask about the existence of solutions of (1.1) emanating from 0 and
terminating at 0. We will call such solutions almost homoclinic (to 0).

Definition 1.1. We will say that a solution q: R → Rn of (1.1) is almost
homoclinic (to 0) if q(t) → 0, as t → ±∞.

Our main theorem states as follows.

Theorem 1.2. If the assumptions (H1)–(H6) are satisfied then the Hamil-
tonian system (1.1) possesses an almost homoclinic solution q0 ∈ W 1,2(R, Rn)
such that

q̇0(t) → 0, as t → ±∞.

This result is proved in Section 2 by studying the corresponding to (1.1)
action functional I:W 1,2(R, Rn) → R. Applying Ekeland’s principle we get
a sequence {qk}k∈N such that {I(qk)}k∈N is bounded and I ′(qk) → 0, as k →∞.
We show that {qk}k∈N has a weakly convergent subsequence and its weak limit
is a desired almost homoclinic solution.

The author wishes to express her thanks to the referee for helpful comments
and suggestions.

2. Proof of Theorem 1.2

Let E be the Sobolev space W 1,2(R, Rn) with the standard norm

‖q‖E :=
( ∫ ∞

−∞
(|q(t)|2 + |q̇(t)|2) dt

)1/2

.

We first recall some auxiliary properties of functions from E.

Fact 2.1. Let q: R → Rn be a continuous mapping such that q̇ ∈ L2
loc(R, Rn).

For every t ∈ R the following inequality holds

(2.1) |q(t)| ≤
√

2
( ∫ t+1/2

t−1/2

(|q(s)|2 + |q̇(s)|2) ds

)1/2

.

The proof of Fact 2.1 can be found in [8]. (See Fact 2.8, p. 385.)

Fact 2.2. For each q ∈ E,

(2.2) ‖q‖L∞(R,Rn) ≤
√

2‖q‖E .

Fact 2.2 is a direct consequence of the inequality (2.1).



134 J. Janczewska

Fact 2.3. For each q ∈ E, if p ∈ [2,∞), then

‖q‖Lp(R,Rn) ≤ 2(p−2)/(2p)‖q‖E .

Moreover, if ‖q‖L∞(R,Rn) ≤ 1, then

(2.4) ‖q‖p
Lp(R,Rn) ≤ ‖q‖2L2(R,Rn).

Proof. Applying (2.2) we get

‖q‖p
Lp(R,Rn) =

∫ ∞

−∞
|q(t)|p dt ≤ ‖q‖p−2

L∞(R,Rn)

∫ ∞

−∞
|q(t)|2 dt

≤ (
√

2‖q‖E)p−2‖q‖2L2(R,Rn) ≤ 2(p−2)/2‖q‖p
E ,

which completes the proof. �

Remark that E ⊂ Lp(R, Rn) for 2 ≤ p ≤ ∞ and the embedding is continuous.
Let I:E → R be given by

I(q) :=
∫ ∞

−∞

[
1
2
|q̇(t)|2 − V (t, q(t)) + (f(t), q(t))

]
dt.

Then, by (H3) and (H4), I ∈ C1(E, R) and it is easy to verify that

I ′(q)w =
∫ ∞

−∞
[(q̇(t), ẇ(t))− (Vq(t, q(t)), w(t)) + (f(t), w(t))] dt

and any critical point of I on E is a classical solution of (1.1) with q(±∞) = 0.
From the pinching condition (H2), for every q ∈ E we have

(2.5) I(q) ≥ 1
2
b1‖q‖2E −

∫ ∞

−∞
W (t, q(t)) dt− ‖f‖L2(R,Rn)‖q‖E .

Assume that ‖q‖E ≤ (
√

2/2)r. It follows from (2.2) that ‖q‖L∞(R,Rn) ≤ r.
Using (H5) and (2.4), we get

(2.6)
∫ ∞

−∞
W (t, q(t)) dt ≤

∫ ∞

−∞
M |q(t)|µ dt = M‖q‖µ

Lµ(R,Rn) ≤ M‖q‖2E

and therefore by (2.5) and (2.6), we receive

(2.7) I(q) ≥ 1
2
‖q‖E [(b1 − 2M)‖q‖E − 2‖f‖L2(R,Rn)].

Hence I is bounded from below on a disc {q ∈ E: ‖q‖E ≤ (
√

2/2)r}.
Let

c := inf
{

I(q): ‖q‖E ≤
√

2
2

r

}
≤ I(0) = 0.

Furthermore, by (2.7) and (H6),

I(q) ≥
√

2
4

r

[√
2

2
r

(
b1 − 2M

)
− 2‖f‖L2(R,Rn)

]
≡ α > 0,
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if ‖q‖E = (
√

2/2)r. Hence, by Ekeland’s variational principle (see Theorem 4.2
in [10]) there exists a sequence {qk}k∈N ⊂ {q ∈ E: ‖q‖E ≤ (

√
2/2)r} such that

(2.8) I(qk) → c and I ′(qk) → 0,

as k →∞. Since {qk}k∈N is a bounded sequence in a reflexive Banach space E,
it possesses a weakly convergent subsequence.

Let q0 denote a weak limit of a weakly convergent subsequence of {qk}k∈N.
Without loss of generality, we will write

(2.9) qk ⇀ q0 in E,

as k →∞. This implies that qk → q0 in L∞loc(R, Rn), as k →∞.

Lemma 2.4. q0 given by (2.9) is an almost homoclinic solution of (1.1).

Proof. Since q0 ∈ E, by Fact 2.1, q0(t) → 0, as t → ±∞. Therefore, it is
sufficient to show that I ′(q0) = 0. Fix w ∈ C∞

0 (R, Rn) and assume that for some
A > 0, supp(w) ⊂ [−A,A]. We have

I ′(qk)w =
∫ A

−A

[(q̇k(t), ẇ(t))− (Vq(t, qk(t)), w(t)) + (f(t), w(t))] dt

for each k ∈ N. From (2.8), it follows that I ′(qk)w → 0, as k → ∞. On the
other hand, ∫ A

−A

(q̇k(t), ẇ(t))dt →
∫ A

−A

(q̇0(t), ẇ(t)) dt,

as k →∞, by (2.9), and∫ A

−A

(Vq(t, qk(t)), w(t)) dt →
∫ A

−A

(Vq(t, q0(t)), w(t)) dt,

as k → ∞, because qk → q0 uniformly on [−A,A]. Thus I ′(qk)w → I ′(q0)w, as
k → ∞, and, in consequence, I ′(q0)w = 0. Since C∞

0 (R, Rn) is dense in E, we
get I ′(q0) = 0. �

Lemma 2.5. Let q0 be given by (2.9). Then q̇0(t) → 0, as t → ±∞.

Proof. From Fact 2.1, we obtain

|q̇0(t)|2 ≤ 2
∫ t+1/2

t−1/2

|q̈0(s)|2 ds + 2
∫ t+1/2

t−1/2

(|q0(s)|2 + |q̇0(s)|2) ds.

For this reason, it suffices to notice that∫ r+1

r

|q̈0(s)|2 ds → 0,
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as r → ±∞. Since q0 satisfies (1.1), we have∫ r+1

r

|q̈0(s)|2 ds =
∫ r+1

r

(|Vq(s, q0(s))|2 + |f(s)|2) ds

− 2
∫ r+1

r

(Vq(s, q0(s)), f(s)) ds.

From this, we get∫ r+1

r

|q̈0(s)|2 ds ≤ 2
∫ r+1

r

(|Vq(s, q0(s))|2 + |f(s)|2) ds.

(H6) implies, ∫ r+1

r

|f(s)|2ds → 0, as r → ±∞.

Take ε > 0. By (H3) and (H4), there is η > 0 such that for each s ∈ R, if
|q| < η, then |Vq(s, q)| < ε. Moreover, there is δ > 0 such that, if |s| > δ, then
|q0(s)| < η. Hence, if |r| > δ + 1, then∫ r+1

r

|Vq(s, q0(s))|2 ds < ε2,

which completes the proof. �
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