Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Geodesics in conical manifolds
  • Strona domowa
  • /
  • Geodesics in conical manifolds
  1. Strona domowa /
  2. Archiwum /
  3. Vol 25, No 2 (June 2005) /
  4. Articles

Geodesics in conical manifolds

Autor

  • Marco Ghimenti

Słowa kluczowe

Geodesics, nonsmooth critical point theory, nonsmooth manifolds

Abstrakt

The aim of this paper is to extend the definition of geodesics to conical manifolds, defined as submanifolds of ${\mathbb R}^n$ with a finite number of singularities. We look for an approach suitable both for the local geodesic problem and for the calculus of variation in the large. We give a definition which links the local solutions of the Cauchy problem (1.1) with variational geodesics, i.e. critical points of the energy functional. We prove a deformation lemma (Theorem 2.2) which leads us to extend the Lusternik-Schnirelmann theory to conical manifolds, and to estimate the number of geodesics (Theorem 3.4 and Corollary 3.5). In Section 4, we provide some applications in which conical manifolds arise naturally: in particular, we focus on the brachistochrone problem for a frictionless particle moving in $S^n$ or in ${\mathbb R}^n$ in the presence of a potential $U(x)$ unbounded from below. We conclude with an appendix in which the main results are presented in a general framework.

Pobrania

  • FULL TEXT (English)

Opublikowane

2005-06-01

Jak cytować

1.
GHIMENTI, Marco. Geodesics in conical manifolds. Topological Methods in Nonlinear Analysis [online]. 1 czerwiec 2005, T. 25, nr 2, s. 235–261. [udostępniono 4.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 25, No 2 (June 2005)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa