Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Geodesics in conical manifolds
  • Home
  • /
  • Geodesics in conical manifolds
  1. Home /
  2. Archives /
  3. Vol 25, No 2 (June 2005) /
  4. Articles

Geodesics in conical manifolds

Authors

  • Marco Ghimenti

Keywords

Geodesics, nonsmooth critical point theory, nonsmooth manifolds

Abstract

The aim of this paper is to extend the definition of geodesics to conical manifolds, defined as submanifolds of ${\mathbb R}^n$ with a finite number of singularities. We look for an approach suitable both for the local geodesic problem and for the calculus of variation in the large. We give a definition which links the local solutions of the Cauchy problem (1.1) with variational geodesics, i.e. critical points of the energy functional. We prove a deformation lemma (Theorem 2.2) which leads us to extend the Lusternik-Schnirelmann theory to conical manifolds, and to estimate the number of geodesics (Theorem 3.4 and Corollary 3.5). In Section 4, we provide some applications in which conical manifolds arise naturally: in particular, we focus on the brachistochrone problem for a frictionless particle moving in $S^n$ or in ${\mathbb R}^n$ in the presence of a potential $U(x)$ unbounded from below. We conclude with an appendix in which the main results are presented in a general framework.

Downloads

  • FULL TEXT

Published

2005-06-01

How to Cite

1.
GHIMENTI, Marco. Geodesics in conical manifolds. Topological Methods in Nonlinear Analysis. Online. 1 June 2005. Vol. 25, no. 2, pp. 235 - 261. [Accessed 4 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 25, No 2 (June 2005)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop