Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Mountain pass solutions and an indefinite superlinear elliptic problem on $\mathbb R^{\mathbb N}$
  • Strona domowa
  • /
  • Mountain pass solutions and an indefinite superlinear elliptic problem on $\mathbb R^{\mathbb N}$
  1. Strona domowa /
  2. Archiwum /
  3. Vol 22, No 1 (September 2003) /
  4. Articles

Mountain pass solutions and an indefinite superlinear elliptic problem on $\mathbb R^{\mathbb N}$

Autor

  • Yihong Du
  • Yuxia Guo

Słowa kluczowe

Mountain pass solution, Morse index, a priori estimates

Abstrakt

We consider the elliptic problem $$ -\Delta u-\lambda u=a(x) g(u), $$ with $a(x)$ sign-changing and $g(u)$ behaving like $u^p$, $p> 1$. Under suitable conditions on $g(u)$ and $a(x)$, we extend the multiplicity, existence and nonexistence results known to hold for this equation on a bounded domain (with standard homogeneous boundary conditions) to the case that the bounded domain is replaced by the entire space $\mathbb R^N$. More precisely, we show that there exists $\Lambda> 0$ such that this equation on $\mathbb R^N$ has no positive solution for $\lambda> \Lambda$, at least two positive solutions for $\lambda\in (0,\Lambda)$, and at least one positive solution for $\lambda\in (-\infty,0]\cup\{\Lambda\}$. Our approach is based on some descriptions of mountain pass solutions of semilinear elliptic problems on bounded domains obtained by a special version of the mountain pass theorem. These results are of independent interests.

Pobrania

  • FULL TEXT (English)

Opublikowane

2003-09-01

Jak cytować

1.
DU, Yihong & GUO, Yuxia. Mountain pass solutions and an indefinite superlinear elliptic problem on $\mathbb R^{\mathbb N}$. Topological Methods in Nonlinear Analysis [online]. 1 wrzesień 2003, T. 22, nr 1, s. 69–92. [udostępniono 5.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 22, No 1 (September 2003)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa