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MOUNTAIN PASS SOLUTIONS
AND AN INDEFINITE SUPERLINEAR

ELLIPTIC PROBLEM ON RN

Yihong DU — Yuxia Guo

Abstract. We consider the elliptic problem

−∆u− λu = a(x)g(u),

with a(x) sign-changing and g(u) behaving like up, p > 1. Under suit-

able conditions on g(u) and a(x), we extend the multiplicity, existence and

nonexistence results known to hold for this equation on a bounded domain
(with standard homogeneous boundary conditions) to the case that the

bounded domain is replaced by the entire space RN . More precisely, we

show that there exists Λ > 0 such that this equation on RN has no positive
solution for λ > Λ, at least two positive solutions for λ ∈ (0, Λ), and at

least one positive solution for λ ∈ (−∞, 0] ∪ {Λ}.
Our approach is based on some descriptions of mountain pass solutions

of semilinear elliptic problems on bounded domains obtained by a special

version of the mountain pass theorem. These results are of independent
interests.

1. Introduction

This paper is a continuation of [13] where the elliptic problem

(1.1) −∆u− λu = a(x)up, x ∈ RN
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with p > 1 and a(x) sign-changing is studied. This is known as an indefinite
superlinear problem. The fact that a(x) changes sign poses extra difficulties
from the cases that a(x) is always negative (the sublinear case) and a(x) is
always positive (the superlinear case).

The approach in [13] is based on bounded domain approximation and global
bifurcation arguments. Here we replace the global bifurcation argument by some
variational ones. This allows us to relax the restriction on the range of p made in
[13] for the main result. A key ingredient for this improvement is some nonlinear
Liouville theorems obtained in [23] for solutions of some limiting entire space
problems that have finite Morse index. In order to use these Liouville theorems,
we have to prove a variation of the well known mountain pass theorem and give
some descriptions of its solutions; this may have other applications and seems to
be of independent interest.

When (1.1) is considered on a bounded domain Ω ⊂ RN with standard
homogeneous boundary conditions on ∂Ω, it is known from recent results (see,
for example, [1], [2], [4], [5], [25]) that, under suitable conditions on p and on the
behaviour of a(x) near its zero set, (1.1) has a positive solution for λ = λ1(Ω) (the
first eigenvalue of the Laplacian under the corresponding boundary conditions
on ∂Ω) if and only if

(1.2)
∫

Ω

a(x)φp+1(x) dx < 0,

where φ denotes the (normalized) positive eigenfunction corresponding to λ1(Ω).
Moreover, when (1.2) is satisfied, there exists Λ > 0 such that (1.1) has at least
two positive solutions for every λ ∈ (λ1(Ω),Λ), at least one positive solution
for λ = Λ and for λ = λ1(Ω), and no positive solution for λ > Λ. Under less
restrictive conditions, (1.1) has at least one positive solution for each λ < λ1(Ω).

We are interested in extending these results to the entire space problem (1.1).
We were motivated by a recent work of Costa and Tehrani ([11]), where such an
extension was partially achieved through a variational approach. To overcome
the typical difficulties with entire space problems, such as loss of compactness,
[11] considered a problem on RN including (1.1) as a typical case, but with λ

replaced by λh(x), where h is a nonnegative function belonging to the space
LN/2(RN )∩Lα(RN ) for some α > N/2. This allows them to regain compactness
for the variational approach. Moreover, the eigenvalue problem

−∆u = λh(x)u, u ∈ D1,2(RN )

behaves similarly to the finite domain case, with a first eigenvalue λ1(h) > 0.
Under conditions on p and a(x) similar to those for the bounded domain case,
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and furthermore,

(1.3) lim
|x|→∞

a(x) = a∞ < 0,

it is shown in [11] that the entire space problem has at least one positive solution
for λ ≤ λ1(h), and at least two positive solutions for λ in a small right neighbour-
hood of λ1(h). The existence of a critical Λ > 0 as in the finite domain case was
not considered in [11]. The introduction in [11] contains a fairly detailed account
of other studies of entire space problems. We refer to that and the references
therein for the interested reader. See also [10] for some more recent results.

In contrast with [11], we use a bounded domain approximation approach to
study (1.1). This allows us to avoid replacing λ by λh(x) as in [11]. Under
similar conditions on p > 1 and a(x) as in the bounded domain case, and (1.3),
a complete extension of the bounded domain result is obtained in [13], namely,
there exists Λ > 0 such that (1.1) on RN has no positive solution for λ > Λ, at
least two positive solutions for λ ∈ (0,Λ), and at least one positive solution for
λ ∈ (−∞, 0] ∪ {Λ}. Note that (1.3) implies (1.2) for all “large” enough Ω.

However, due to the method used in [13] to obtain a priori bound for positive
solutions on bounded domains, the optimal range of p is not reached in the main
result there. In this paper, we replace the global bifurcation argument in [13] by
a variational approach which yields, for the bounded domain problems, positive
solutions with uniformly bounded Morse index. This enables us to use techniques
of [23] to obtain a priori bound for these solutions with p reaching the optimal
range, and hence the main result for such p.

In Section 2, we prove a variant of the mountain pass theorem and provide
some descriptions of the mountain pass solutions so obtained, where upper and
lower solutions and the order structure of some widely used spaces are employed.
Similar considerations have been extensively used for various purposes; we refer
to [3], [8], [12], [18], [20] for some examples of these. However, none of the
existing results seems directly applicable to our situation here.

In Section 3, we apply the results of Section 2 to the indefinite superlinear
problem (1.1). We mainly follow the lines of [13] but with the variational consid-
eration replacing the global bifurcation arguments. While the global bifurcation
argument allows us to replace up in (1.1) by a wide class of more general func-
tions (as mentioned at the end of Section 1 in [13]), the variational approach
seems more sensitive to such generalizations. This is caused mainly by checking
the (PS) condition with a sign-changing a(x) for the bounded domain problems.
In order to demonstrate this point, we have replaced up by g(u) with the re-
quirements on g(u) stated explicitly in each step of our proof towards the main
result. Note that we have also replaced a(x) by −b(x) to match the notations
in [13].
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2. Mountain pass solutions

In this section, we will give some descriptions of certain solutions of a semi-
linear elliptic problem on a bounded domain obtained by a special version of the
mountain pass theorem. These descriptions will become important in our study
of the entire space problem in Section 3.

The results here are variants of some well known conclusions about mountain
pass solutions. These variations seem necessary in order to be applicable to our
entire space problem, and some of them cause nontrivial difficulties in the proof.

Consider the problem

(2.1) −∆u = f(x, u) in Ω, u|∂Ω = 0,

where Ω is a bounded domain in RN with smooth boundary, f is continuous in
x ∈ Ω and C1 in u ∈ (−∞,∞) uniformly for x ∈ Ω, and we assume the natural
growth condition

(2.2) |f(x, u)| ≤ c(1 + |u|q),

where c is a positive constant and 1 < q ≤ (N + 2)/(N − 2) when N ≥ 3, q > 1
is arbitrary when N = 1, 2.

Recall that (weak) solutions of (2.1) are critical points of

I(u) =
∫

Ω

|∇u|2/2− F (x, u), u ∈ H1
0 (Ω),

where F (x, u) =
∫ u

0
f(x, s) ds.

u0 ∈ H1
0 (Ω) is called a lower solution to (2.1) if∫

Ω

∇u0 · ∇φ− f(x, u0)φ ≤ 0 for all φ ∈ C∞0 (Ω), φ ≥ 0.

u0 is an upper solution to (2.1) if∫
Ω

∇u0 · ∇φ− f(x, u0)φ ≥ 0 for all φ ∈ C∞0 (Ω), φ ≥ 0.

Suppose that C is a subset of H1
0 (Ω). We say that I satisfies the (PS)

condition in C if for any sequence {un} ⊂ C, {I(un)} bounded and I ′(un) → 0
imply that {un} has a convergent subsequence.

A solution u0 to (2.1) is said to have Morse index k, written m(u0) = k, if

J(φ) =
∫

Ω

|∇φ|2 − fu(x, u0(x))φ2

is negative definite on a k-dimensional subspace of H1
0 (Ω) but not on any k+ 1-

dimensional subspace of H1
0 (Ω).

We will use the following notations. For u ∈ H1
0 (Ω),

[u,∞) = {w ∈ H1
0 (Ω) : w ≥ u a.e. in Ω}.
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For u, v ∈ H1
0 (Ω) satisfying u ≤ v a.e. in Ω,

[u, v] = {w ∈ H1
0 (Ω) : u ≤ w ≤ v a.e. in Ω}.

The following technical condition will be useful.
For any given positive constant K > 0, there exists a strictly increasing C1

function mK(u) with mK(0) = 0 satisfying, for every x ∈ Ω and |α| ≤ K,

(2.3)

{
(a) |mK(u)| ≤ cK(1 + |u|r),
(b) f(x, α+ u) +mK(u) is strictly increasing in u,

where cK is a positive constant and 1 < r ≤ (N +2)/(N −2) when N ≥ 3, r > 1
is arbitrary if N = 1, 2.

We are now ready to state our main results of this section.

Theorem 2.1. Suppose that (2.2) and (2.3) hold and that u, u ∈ C1
0 (Ω) is

a pair of lower and upper solutions of (2.1) satisfying u ≤ u in Ω. Moreover,
suppose that u is not a solution of (2.1) and there exists u0 ∈ C1

0 (Ω) such that

u0 ≥ u in Ω, I(u0) ≤ inf
u∈[u,u]

I(u),

and I satisfies the (PS) condition in [u,∞). Then

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > inf
u∈[u,u]

I(u),

where Γ = {γ ∈ C([0, 1], [u∗,∞)∩C1
0 (Ω)) : γ(0) = u∗, γ(1) = u0}, and u∗ is the

maximal solution of (2.1) in [u, u]. Moreover, (2.1) has a solution u∗ satisfying

(a) I(u∗) = c,
(b) u∗ ∈ [u,∞) \ [u, u],
(c) u∗ > u∗ in Ω,
(d) u∗ is either a local minimizer of I in the smaller space C1

0 (Ω) or is
a critical point of I of mountain pass type in C1

0 (Ω).

Here following Hofer ([19]), u∗ is called a critical point of I of mountain pass
type in C1

0 (Ω) if given any neighbourhood N of u∗ in C1
0 (Ω), N ∩Ic is not empty

and not path-connected, where Ic denotes the set {u ∈ H1
0 (Ω) : I(u) < c} and

c = I(u∗).
Let us note that by [7], u∗ is a local minimizer of I in C1

0 (Ω) implies that it
is also a local minimizer of I in H1

0 (Ω). In our applications in Section 3, we will
need an estimate of the Morse index of the solution u∗ in Theorem 2.1. This is
provided by the following result.
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Theorem 2.2. Suppose that u∗ is a solution of (2.1) with f satisfying (2.2).
If u∗ is either a local minimizer of I in C1

0 (Ω) or is a critical point of I of
mountain pass type in C1

0 (Ω), then m(u∗) ≤ 1. Note that we do not assume that
u∗ is an isolated solution of (2.1).

The rest of this section consists of the proofs for the above two theorems.
A large part of the proofs consists of examination or variation of existing proofs
of various facts from different sources. Therefore we will from time to time be
rather brief in the proof. On the other hand, in order to make the ideas clear,
efforts are made to provide necessary details for all the major steps.

Proof of Theorem 2.1. Choose a finite interval [α, β] ⊂ (−∞,∞) such
that [α, β] ⊃ [u(x), u(x)] for x ∈ Ω. Then we can find a large positive constant
M such that f(x, u) +Mu is strictly increasing in u for u ∈ [α, β]. Let us define
v0 = u and for n ≥ 1, let vn be the unique weak solution to

−∆vn +Mvn = f(x, vn−1) +Mvn−1, vn|∂Ω = 0.

It is well known that as n→∞, vn decreases to a maximal solution u∗ of (2.1) in
the order interval [u, u]. Since −∆u∗ = f( · , u∗) ∈ L∞(Ω), a standard regularity
consideration yields that u∗ ∈ C1

0 (Ω). Since u is not a solution, by standard
comparison argument, u∗ < u in Ω.

Let C = [u∗,∞) or [u∗, u] or [u, u]. We will consider the restriction of I
on C. In the case C = [u∗, u] or [u, u], since f(x, u) +Mu is increasing in u for
u ∈ [α, β] which covers the range of u for u ∈ C, it is well known (see [18]) that
by choosing a suitable equivalent norm in H1

0 (Ω), I ′(u) has the form

I ′(u) = u−K(u),

where K is a nonlinear order-preserving operator that maps C into itself. This
enables the construction of a flow which leaves C invariant and can be used to
obtain a deformation lemma in C, and therefore a critical point theory on C can
be established. Such an approach carries over to the case C = [u∗,∞) if there
exists some M1 > 0 such that f(x, u) + M1u is increasing in u for u ∈ [α,∞),
which, however, can never be satisfied if f(x, u) = λu+ a(x)u|u|p−1, with p > 1
and a(x) sign-changing. To overcome this difficulty, we make use of (2.3) and
adapt a trick in [20]. Denote f̃(x, u) = m(u) + f(x, u), where m(u) = mK(u)
with K satisfying u(x), u(x) ∈ [−K,K]. Then (2.1) can be rewritten as

−∆u+m(u) = f̃(x, u), u|∂Ω = 0.

Correspondingly, I(u) can be rewritten in the form

I(u) =
∫

Ω

|∇u|2/2 +
∫

Ω

M(u)−
∫

Ω

F̃ (x, u),
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where M(u) =
∫ u

0
m(s) ds, F̃ (x, u) =

∫ u

0
f̃(x, s) ds. Now we can write I ′(u) in

the form
I ′(u) = A0(u)−K(u),

where A0(u) = u + (−∆)−1m(u) and K(u) = (−∆)−1f̃( · , u) are both order
preserving in C, since both m(u) and f̃(x, u) are increasing in u. Moreover, it
is shown in [20, Section 4] that A0 is C1 and has a C1 inverse A−1

0 which is
order-preserving and satisfies, for some a0 > 0,

‖A−1
0 (u)‖ ≥ a0‖u‖ if ‖A−1

0 (u)‖ < 1,∫
Ω

uA−1
0 (u) ≥ ‖A−1

0 (u)||2.

Here and in what follows, ‖ · ‖ denotes the norm in H1
0 (Ω).

By choosing a suitable locally Lipschitz continuous function ψ(u) satisfying
ψ(u) ≥ 0, it is proved in [20] that the unique solution σ(t, u) of

d

dt
σ(t, u) = −ψ(σ)g(σ), σ(0, u) = u,

with g(u) = A−1
0 (I ′(u)), can be used to obtain a deformation lemma (see

Lemma 2.2 in [20]) whose details are listed in Claim 1 below.

Claim 1. Let S ⊂ E := H1
0 (Ω), c ∈ (−∞,∞), ε > 0 and δ > 0 be such that

‖I ′(u)‖ ≥ 2ε
δa0

for all u ∈ I−1([c− 2ε, c+ 2ε]) ∩ S2δ.

Then there exists η ∈ C([0, 1]× E,E) satisfying

(a) η(t, u) = u, if t = 0 or if u 6∈ I−1([c− 2ε, c+ 2ε]) ∩ S2δ,
(b) η(1, Ic+ε ∩ S) ⊂ Ic−ε,
(c) η(t, · ) is a homeomorphism of E, for any fixed t ∈ [0, 1],
(d) ‖η(t, u)− u‖ ≤ δ for all u ∈ E and all t ∈ [0, 1],
(e) I(η(t, u)) is non-increasing in t for t ∈ [0, 1],
(f) I(η(t, u)) < c, for all u ∈ Ic ∩ Sδ and all t ∈ (0, 1],
(g) η(t, u) ∈ C for t ∈ [0, 1] if u ∈ C,
(h) η(t, u) ∈ C ∩ C1

0 (Ω) for t ∈ [0, 1] if u ∈ C ∩ C1
0 (Ω).

Here we used the notation Sδ = {u ∈ H1
0 (Ω) : d(u, S) < δ}.

We should remark that some modifications of the argument in [20] are needed
in order to prove properties (g) and (h) above. These are proved in [20] only
for C = [0,∞) or C is a finite order interval, and for this they require the
extra assumption that A0(u) is linear when ‖u‖L∞(Ω) ≤ M . But such an extra
assumption on A0 does not seem to work when C is of the form [u,∞) with u 6= 0.
This difficulty is circumvented here by making use of (2.3). For example, to show
that for v ≥ 0 one has u + v − A−1

0 (I ′(u + v)) ≥ u, it suffices to show A0(v) ≥
I ′(u + v), which is equivalent to (−∆)−1[f( · , u + v) + m(v)] ≥ u. By (2.3),
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f( · , u + v) +m(v) ≥ f( · , u). Thus the required inequality is a consequence of
the assumption that u is a lower solution of (2.1).

Claim 2. u∗ is a strict local minimizer of I on [u∗,∞).

We consider first the restriction of I on [u∗, u]. It is well known (see [8] or
Theorem 2.4 in [24]) that the global minimizer of I on [u∗, u] is a weak solution
of (2.1). Since u∗ is the only solution of (2.1) in this order interval, necessarily,
u∗ is the global minimizer on [u∗, u]. A simple variant of the argument in [7]
now reveals that u∗ is a local minimizer of I on [u∗,∞).

We show next that u∗ is a strict local minimizer of I on [u∗,∞). Otherwise
we can find un ∈ [u∗,∞) such that un → u∗ in H1

0 (Ω) and I(un) = I(u∗).
Hence un are also local minimizers of I on [u∗,∞). The proof of Theorem 2.4
in [24] then infers that un are weak solutions of (2.1). By standard regularity
considerations as in [7], we deduce that un → u∗ in C1(Ω). But this implies that
un ∈ [u∗, u] for all large n, contradicting the fact that u∗ is the only solution of
(2.1) in that order interval. This proves Claim 2.

Claim 3. There exists δ0 > 0 such that

inf{I(u) : u ∈ [u∗,∞), ‖u− u∗‖ = δ} > I(u∗) for all δ ∈ (0, δ0].

Arguing indirectly we assume that for some δn → 0, we have

inf{I(u) : u ∈ [u∗,∞), ‖u− u∗‖ = δn} ≤ I(u∗).

By Claim 2, we can find some n0 such that

(2.4) I(u) > I(u∗) if n ≥ n0 and u ∈ [u∗,∞), 0 < ‖u− u∗‖ ≤ δn.

Fix m > n0 such that 0 < δm < δn0 . Then we can find {uk} ⊂ [u∗,∞) such that

‖uk − u∗‖ = δm, I(u∗) < I(uk) → I(u∗).

If I ′(uk) → 0, then by the (PS) condition, we can conclude that, subject to a
subsequence, uk → w in H1

0 (Ω) and w is a solution of (2.1) satisfying ‖w−u∗‖ =
δm and I(w) = I(u∗). But this contradicts (2.4). Therefore, by passing to a
subsequence, we may assume that ‖I ′(uk)‖ ≥ ε0 > 0 for all k. But then by the
deformation lemma in Claim 1, we can find t0 > 0 such that vk := η(t0, uk) ∈
[u∗,∞), ‖vk − u∗‖ < δn0 and I(vk) ≤ I(uk) − ξ0 for some ξ0 > 0. It follows
that for all large k, I(vk) < I(u∗), again contradicting (2.4). This completes the
proof of Claim 3.

Claim 4. (2.1) has a solution u∗ satisfying (a)–(d) in the statement of The-
orem 2.1.
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Consider the restriction of I on [u∗,∞). Clearly it satisfies the (PS) condition
on this set. By our assumption, there exists u0 ∈ [u∗,∞) such that

I(u0) ≤ inf
u∈[u,u]

I(u) ≤ I(u∗).

In view of Claim 3, we find that the mountain pass conditions are satisfied by I
on the convex set [u∗,∞). Using the deformation lemma in Claim 1, we conclude
that I has at least one critical point u∗ which satisfies I(u∗) = c with

(2.5) c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > I(u∗),

where Γ = {γ ∈ C([0, 1], [u∗,∞) ∩ C1
0 (Ω)) : γ(0) = u∗, γ(1) = u0}.

By the (PS) condition, the set Σ := {u ∈ [u∗,∞) : I ′(u) = 0, I(u) = c} is
compact in H1

0 (Ω). Since Σ consists of solutions of (2.1), by (2.2) and standard
regularity results (see [7]), Σ is bounded in C1,µ(Ω), for all µ ∈ (0, 1). Hence Σ
is compact in C1

0 (Ω).
Now a careful examination of the proof of the main theorem in [19] shows

that when the deformation lemma in [19] is replaced by our deformation lemma
in Claim 1, everything carries over to our present case, namely, the Banach space
F there can be replaced by [u∗,∞) ∩ C1

0 (Ω). Therefore, by [19], I has a critical
point u∗ in [u∗,∞) with I(u∗) = c, c given by (2.5), which is either a local
minimizer or is of mountain pass type in [u∗,∞) ∩ C1

0 (Ω). Since u∗ is the only
solution of (2.1) in [u∗, u] and I(u∗) = c > I(u∗), we necessarily have u∗ > u∗
in Ω and u∗ 6∈ [u∗, u]. As u∗ ∈ [u∗,∞), this implies that u∗ ∈ [u,∞) \ [u, u].
Hence u∗ satisfies (a)–(c). This also implies that u∗ is an interior point in the set
[u∗,∞) ∩ C1

0 (Ω) under the C1(Ω) topology. Thus u∗ is either a local minimizer
or a mountain pass type critical point of I in C1

0 (Ω), and (d) is satisfied. This
completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. Let us first recall that it follows from (2.2) and
a regularity consideration (see [7]) that u∗ ∈ C1

0 (Ω).
The proof for the case that u∗ is a local minimizer of I is rather trivial.

Indeed, in this case we must have m(u∗) = 0 for if m(u∗) ≥ 1, then the first
eigenvalue λ1(Ω) of the problem

(2.6) −∆u = fu(x, u∗)u+ λu, u|∂Ω = 0

is negative. Let φ1 denote a corresponding positive eigenfunction. Then φ1 ∈
C1

0 (Ω) and it is easily checked that I(u∗ + tφ1) < I(u∗) for all small nonzero t.
This contradicts the assumption that u∗ is a local minimizer of I in C1

0 (Ω).
Suppose from now on that u∗ is a mountain pass type critical point of I

in C1
0 (Ω). Regarding u∗ as a critical point of I in the Hilbert space H1

0 (Ω) (pos-
sibly not isolated), we can apply the generalized Morse lemma (see Theorem 8.3
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in [21]) to conclude that there exists a small ball Bδ(0) of radius δ with center 0
in H1

0 (Ω), and a local homeomorphism h defined on Bδ(0) and a C2-mapping φ̂
defined in a neighbourhood of zero of ker (I ′′(u∗)), such that h(0) = 0, φ̂(0) = 0,
φ̂′(0) = 0, φ̂′′(0) = 0 and

(2.7) I(u∗ + h(u)) = I(u∗) + (I ′′(u∗)v, v)/2 + φ̂(w)

for u = v + w ∈ Bδ(0), where v ∈ N⊥,w ∈ N , and we understand that w = 0,
φ̂(w) = 0 when ker (I ′′(u∗)) = {0}.

A crucial fact that we will use is that h can be chosen such that it maps C1
0 (Ω)

functions into C1
0 (Ω) functions. This observation is due to K. C. Chang (see [9])

where a proof is given for the local homeomorphism constructed in Theorem 5.1
of [8]. Here we show that the local homeomorphism given in Theorem 8.3 of [21]
also possesses this property.

Let us first recall the construction of the local homeomorphism h in the
proof of Theorem 8.3 in [21]. We denote L = I ′′(u∗) and will assume that
dim (ker (L)) ≥ 1 as the proof for the case ker (L) = {0} is similar and simpler.
Without loss of generality, we also assume that u∗ = 0.

It is well known that L is a Fredholm operator of index zero in the space V :=
H1

0 (Ω). Therefore V is the orthogonal direct sum of ker (L) and its range R(L).
Let v + w denote the decomposition of u ∈ V with v ∈ R(L) and w ∈ ker (L),
and Q:V → V be the orthogonal projection onto R(L). By the implicit function
theorem, we can find r > 0 and a C1-mapping g:Br(0) ∩ ker (L) → R(L) such
that

(2.8) g(0) = 0, g′(0) = 0, QI ′(w + g(w)) = 0, for all w ∈ Br(0) ∩ ker (L).

Define φ̂ on Br(0) ∩ ker (L) by φ̂(w) = I(w + g(w)). By direct computation one
finds φ̂ ∈ C2(Br(0) ∩ ker (L)) and φ̂′(0) = 0, φ̂′′(0) = 0. Define

Ψ(c, w) = I(v + w + g(w))− φ̂(w)− (Lv, v)/2.

Then Ψ(0, w) = 0,Ψv(0, w) = 0,Ψvv(0, w) = 0 and it follows that for each ε > 0,
there exists δ(ε) ∈ (0, r) such that

|Ψ(v, w)| ≤ ε‖v‖2, ‖Ψv(v, w)‖ ≤ ε‖v‖2 whenever ‖v + w‖ ≤ δ(ε).

Since L:R(L) → R(L) is continuous and invertible, there exists c > 0 such that

c−1‖v‖ ≤ ‖Lv‖ ≤ c‖v‖ for all v ∈ R(L).

Define
f(t, v, w) = −Ψ(v, w)‖Lv + tΨv(v, w)‖−2(Lv + tΨv(v, w))

when v 6= 0 and f(t, 0, w) = 0. Then the Cauchy problem

ηt = f(t, η, w), η(0) = v
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has a unique solution η(t) = η(t, v, w) which is well-defined and continuous on
[0, 1]×Br1(0), where Br1(0) is a small ball in V centered at 0. The homeomor-
phism h is given by

h(u) = h(v + w) = w + g(w) + η(1, v, w).

We are now ready to show that u ∈ C1
0 (Ω)∩Bδ(0) implies h(u) ∈ C1

0 (Ω). To
start, let us observe that w ∈ ker (L) if and only if w solves (2.6) with λ = 0.
Hence w ∈ ker (L) implies that w ∈ C1

0 (Ω). By (2.8), z := w + g(w) satisfies

I ′(z) = h, h ∈ ker (L).

Hence ∫
Ω

∇z · ∇φ− f(x, z)φ =
∫

Ω

∇h · ∇φ for all ψ ∈ H1
0 (Ω).

It follows that

−∆(z − h) = f(x, z), z|∂Ω = 0

in the weak sense. Hence by (2.2) and a regularity consideration (see [7]) we have
z − h ∈ C1

0 (Ω). As w, h ∈ ker (L) ⊂ C1
0 (Ω), we conclude that g(w) ∈ C1

0 (Ω).
It remains to show that η(1, v, w) ∈ C1

0 (Ω) when v ∈ C1
0 (Ω). To this end, we

note that

Lv = v −K(fu( · , 0)v) with K = (−∆)−1,

and

Lv + tΨv(v, w) =Lv + t(I ′(v + w + g(w))− Lv)

=Lv + t(v + w + g(w)−K ◦ f( · , v + w + g(w))− Lv)

= v + (1− t)K(fu( · , 0)v) + t(w + g(w))

− tK ◦ f( · , v + w + g(w)).

Denote η(t) = η(t, v, w) and

σ(t) =

{
Ψ(η(t), w)‖Lη(t) + tΨv(η(t), w)‖−2 if η(t) 6= 0,

0 otherwise.

We find that σ(t) is continuous on [0, 1] (when ‖v + w‖ is small enough) and

η′(t) = − σ(t)(Lη(t) + tΨv(η(t), w))

= − σ(t)η(t)− σ(t)t(w + g(w))− σ(t)(1− t)K(fu( · , 0)η(t))

+ σ(t)tK ◦ f( · , η(t) + w + g(w)).

Hence, denoting

σ̂(t) =
∫ 1

0

σ(s) ds,
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we obtain

η(t) = e−bσ(t)η(0)− e−bσ(t)

∫ 1

0

ebσ(s)σ(s)s ds(w + g(w))

− e−bσ(t)K

( ∫ t

0

ebσ(s)σ(s)(1− s)fu( · , 0)η(s) ds
)

+ e−bσ(t)K

( ∫ t

0

ebσ(s)σ(s)sf( · , η(s) + w + g(w)) ds
)
.

We have already proved that w + g(w) ∈ C1
0 (Ω). Thus the second term on the

right side of the above identity is in C1
0 (Ω). Due to the regularity of K and (2.2),

we find that the third and fourth terms on the right side also belong to C1
0 (Ω).

Hence, whenever η(0) = v ∈ C1
0 (Ω) (with ‖v + w‖ small), η(t) ∈ C1

0 (Ω) for all
t ∈ [0, 1]. In particular η(1) ∈ C1

0 (Ω), as we wanted.
We can now use (2.7) to prove m(u∗) ≤ 1. Recall that by assumption, for any

neighbourhood N of u∗ in C1
0 (Ω), N ∩ Ic is not empty and not path-connected,

where c = I(u∗). Arguing indirectly, we assume that m(u∗) ≥ 2. We then
decompose V = H1

0 (Ω) as V = V− ⊕ V0 ⊕ V+, where (Lu, u) is negative definite
on V−, positive definite on V+, and V0 = ker (L). Hence dim (V−) = m(u∗) ≥ 2
and there exists δ0 > 0 such that

(Lu, u) ≤ −δ0‖u‖2 for all u ∈ V−,
(Lu, u) ≥ δ0‖u‖2 for all u ∈ V+.

We now fix δ1 > 0 small enough such that

N0 := {u = v− + v+ + w ∈ V1 ⊕ V+ ⊕ V0 : ‖v−‖′ < δ1, ‖v+‖′ < δ1, ‖w‖′ < δ1}

is contained in Bδ(0) in which (2.7) holds, where ‖ · ‖′ denotes the C1
0 (Ω)-norm.

Let us observe that N0 given above is a neighbourhood of 0 in C1
0 (Ω). Indeed,

V− is of finite dimension spanned by the eigenfunctions of (2.6) corresponding to
negative eigenvalues. Since the eigenfunctions are in C1

0 (Ω), one easily sees that
the component v− of u is in C1

0 (Ω) with small C1
0 (Ω)-norm if u is so. A similar

reasoning shows that the same holds for the component w. It then follows from
these conclusions on v− and w that the same holds for v+. Therefore N0 contains
all u with small C1

0 (Ω)-norm, and is a neighbourhood of 0 in C1
0 (Ω).

Since V− ⊕ V0 if of finite dimension, the norms ‖ · ‖ and ‖ · ‖′ on V− ⊕ V0 are
equivalent, that is, there exists c0 > 1 such that

c−1
0 ‖v‖ ≤ ‖v‖′ ≤ c0‖v‖ for all v ∈ V− ⊕ V0.

By the properties of φ̂ given before (2.7), we can find δ̂ > 0 small enough such
that

(2.9) |φ̂(w)| ≤ δ0
16c40

‖w‖2 for all w ∈ V0, ‖w‖ ≤ δ̂.
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We may assume that δ1 in the definition of N0 has been chosen such that δ1 ≤
δ̂/c0; hence (2.9) holds if ‖w‖′ < δ1.

We show next that dim (V−) ≥ 2 implies that (u∗ + h(N0)) ∩ Ic is path-
connected. This contradiction would finish our proof that m(u∗) ≤ 1. To this
end, for u, ũ ∈ N0 with u∗ + h(u), u∗ + h(ũ) ∈ Ic, we write u ∼ ũ if and only if
h(u) and h(ũ) are in the same path-connected component of (u∗ + h(N0)) ∩ Ic.
For an arbitrary u = v−+ v+ +w ∈ N0 with I(u∗+h(u)) < c, we have, by (2.7),

(2.10) I(u∗ + h(u)) = I(u∗) + (Lv−, v−)/2 + (Lv+, v+)/2 + φ̂(w).

Consider the curve γ(t) = v− + tv+ + w, t ∈ [0, 1]. Since v−, v+, w ∈ C1
0 (Ω), we

find that γ(t) ∈ N0 for all t ∈ [0, 1]. By (2.10)

I(u∗ + h(γ(t))) ≤ I(u∗ + h(γ(1))) = I(u∗ + h(u)) < c for all t ∈ [0, 1].

Therefore, u = γ(1) ∼ γ(0) = v− + w.
We now choose v̂− ∈ V− as follows.

v̂− =


v− if ‖v−‖ ≥

δ1
2c0

,

δ1
2c0

v−
‖v−‖

if 0 < ‖v−‖ <
δ1
2c0

,

v̂− ∈ V− is arbitrary with ‖v̂−‖ = δ1/(2c0) if v− = 0. Clearly v̂− ∈ N0 and
‖v̂−‖ ≥ δ1/(2c0). Moreover,

‖tv̂− + (1− t)v−‖ ≥ ‖v−‖ for all t ∈ [0, 1].

Thus, by (2.10), v− + w ∼ v̂− + w. Using (2.19) and (2.10) we find

I(u∗ + h(v̂− + tw)) = I(u∗) +
(
Lv̂−,

1
2
v̂−

)
+ φ̂(tw)

≤ I(u∗)− 1
2
δ0‖v̂−‖2 +

δ0
16c40

‖tw‖2

≤ I(u∗)− δ0
2

(
δ1
2c0

)2

+
δ0

16c40
(c0δ1)2

= I(u∗)− δ0δ
2
1

16c20
< I(u∗),

for all t ∈ [0, 1]. Hence v̂− + w ∼ v̂−. Thus we must have u ∼ v̂−. That is
to say, any given u ∈ N0 with u∗ + h(u) ∈ Ic can be connected by a path in
(u∗ + h(N0)) ∩ Ic ⊂ C1

0 (Ω) to some ũ ∈ N− := {z ∈ V− : 0 < ‖z‖′ < δ1}.
Since dim (V−) ≥ 2, the set N− is path connected, and by (2.10), we find that
u∗ + h(N−) ⊂ Ic. Thus u∗ + h(N−) is path-connected in (u∗ + h(N0)) ∩ Ic. It
follows that (u∗ +h(N0))∩ Ic is path-connected. This contradiction finishes our
proof of Theorem 2.2. �
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3. An indefinite superlinear problem on RN

In this section, we use the results obtained in Section 2 to study the following
elliptic problem

(3.1) −∆u = λu− b(x)g(u), x ∈ RN ,

where λ is a real parameter and g(u) is a C1([0,∞)) function to be specified
later; it will include up, p > 1, as a special case.

We largely follow the strategy used in [13], that is, firstly analyze (3.1) over
bounded domains and then letting the domains converge to RN . The difficulty
of this approach lies in controlling the solutions as the domains enlarging to RN .

By a positive solution of equation (3.1) we mean a function u ∈ C1(RN ) such
that u > 0 on RN and∫

RN

(∇u · ∇v − (λu− b(x)g(u))v dx = 0 for all v ∈ C∞0 (RN ).

By classical theory on elliptic equations, we know that u ∈ W 2,q
loc (RN ) for any

q > 1 (a weak solution) and if further the function b(x) is Hölder continuous
on RN , then u belongs to C2(RN ) (a classical solution).

In the following, we denote by Br0(x0) the open ball in RN with center x0

and radius r0. In particular we denote BR := BR(0).
Our first result is the following.

Theorem 3.1. Suppose that b(x) is a continuous function such that

(3.2) b(x) < 0 in a ball Br0(x0), b(x) ≥ δ > 0 for |x| ≥ R0,

and g(u) is a C1-function for u ≥ 0 satisfying

(G1) g(u) > 0 for all u > 0,
(G2) g(0) = g′(0) = 0 and, for some p > 1, limu→0+ g(u)/up = l0 ∈ (0,∞).

Then there exists Λ > 0 such that (3.1) has at least one positive solution for each
λ ∈ (0,Λ), and it has no positive solution for λ > Λ.

The above result can be regarded as an extension to the entire space RN of
Theorem 2 in [4] where (3.1) was considered on a bounded domain. A proof for
Theorem 3.1 for the special case g(u) = up has been given in [13], by a bounded
domain approximation argument. This proof carries easily to our present case
here. We sketch it below for completeness and also for easy reference later.

We start with some results for (3.1) on bounded domains. By (3.2) and the
proof of Proposition 2.2 in [13], we find that Theorem 2 of [4] can be used to
conclude the following.
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Proposition 3.2. Suppose that b(x) satisfies (3.2) and g(u) satisfies (G1)
and (G2). Then one can find R∗ > R0 so that for any ball BR with R ≥ R∗
there exists ΛR ∈ (λ1(BR),∞) such that the problem

(3.3) −∆u = λu− b(x)g(u), x ∈ BR, u|∂BR
= 0

has at least one positive solution for λ ∈ (λ1(BR),ΛR), and no positive solu-
tion for λ > ΛR. Here λ1(BR) denotes the first eigenvalue of −∆ on BR with
Dirichlet boundary conditions.

Moreover, by standard comparison arguments as in the proof of Proposi-
tion 2.3 in [13], we have the following result.

Proposition 3.3. Under the conditions of Proposition 3.2, for each R ≥ R∗
and λ ∈ (λ1(BR),ΛR), (3.3) has a minimal positive solution uR

λ in the sense that
any positive solution u of (3.3) satisfies u ≥ uR

λ in BR. Moreover,

(3.4) ΛR1 ≥ ΛR2 whenever R∗ ≤ R1 ≤ R2

and

(3.5) uR1
λ1

(x) ≤ uR2
λ2

(x) whenever both sides are defined and λ1 ≤ λ2, R1 ≤ R2.

A key step in the proof of Theorem 3.1 is the construction of an upper solution
u0 to (3.3) which is independent of R. This is done in the proof of Lemma 2.5
in [13] for the case g(u) = up, which can be easily adapted.

Proof of Theorem 3.1. We choose a continuous radially symmetric func-
tion b̃(x) = b̃(r), r = |x|, such that

(3.6)
b̃(x) ≤ b(x), for all x ∈ BR0 ,

b̃(x) = δ, |x| ≥ R0.

This is possible due to our assumption (3.2). Then we can apply Theorem 2
of [4] (see [13, Proposition 2.4]) to conclude that, for some large R1 > R0, there
exists λ̃ > 0 such that the following Neumann problem

−∆u = λ̃u− b̃(x)up, x ∈ BR1 , ∂νu|∂BR1
= 0,

has a minimal positive solution ũ. By the Hopf boundary lemma, we see that
ũ > 0 on BR1 . Since the equation is invariant under rotations around the origin,
the minimality of ũ implies that ũ is radially symmetric.

Let η = ũ(R1) and let λ0 ∈ (0, λ̃) be such that λ0η − δg(η) ≤ 0, and define

u0(x) =

{
ũ(x) for x ∈ BR1 ,

η for |x| ≥ R1.

Then it is easy to check that u0 is a weak upper solution of (3.3) for λ = λ0

and every R > R1. Now choose R2 > R1 so that the first Dirichlet eigenvalue
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λ1(BR) < λ0 for all R ≥ R2, and denote by φR the normalized positive eigen-
function corresponding to λ1(BR). Then for all small ε > 0, εφR < u0 in BR

and is a lower solution to (3.3) with λ = λ0. Hence (3.3) has a minimal positive
solution uR

λ0
. Moreover,

(3.7) uR
λ0

(x) ≤ u0(x), for all x ∈ BR and all R ≥ R2.

Now by (3.5) and (3.7), we find that for any x ∈ RN , U0(x) := limR→∞ uR
λ0

(x)
exists and U0(x) ≤ u0(x). Consequently, by regularity theory and a standard
compactness argument, U0 is a nonnegative solution of (3.1) with λ = λ0. More-
over, since U0 ≥ uR

λ0
for every R ≥ R2, U0 is a positive solution of (3.1) for

λ = λ0. Define

Λ := sup{µ > 0 : (3.1) has a positive solution for λ = µ}.

Obviously Λ ≥ λ0.
We claim that Λ ≤ λ1(Br0(x0)). Indeed, if Λ > λ1(Br0(x0)), then we can

find λ > λ1(Br0(x0)) such that (3.1) has a positive solution u with such a λ.
By (3.2), we have

−∆u = λu− b(x)g(u) ≥ λu on Br0(x0).

Let φ denote the normalized positive eigenfunction corresponding to λ1(Br0(x0)).
We deduce

λ

∫
Br0 (x0)

uφ ≤
∫

Br0 (x0)

(−∆u)φ

=
∫

Br0 (x0)

(−∆φ)u+
∫

∂Br0 (x0)

∂νφu < λ1(Br0(x0))
∫

Br0 (x0)

φu.

Hence λ < λ1(Br0(x0)), contradicting our assumption that λ > λ1(Br0(x0)).
It remains to show that (3.1) has a positive solution for every λ ∈ (0,Λ). Let

λ ∈ (0,Λ) be fixed. By the definition of Λ, we can find λ∗ ∈ (λ,Λ] such that (3.1)
has a positive solution u∗ with λ = λ∗. Then u∗ is an upper solution of (3.3) with
the above fixed λ on any BR. Let R∗ be large enough so that λ1(BR) < λ for
all R > R∗. Then for any fixed R > R∗ and all small ε > 0, εφR < u∗ in BR and
are lower solutions to (3.3) with these given λ and R. Hence (3.3) has a positive
solution and ΛR ≥ λ. It follows from Proposition 3.3 that uR

λ exists for all
R > R∗, and uR

λ ≤ u∗. Now by the same arguments as before, U∗ := limn→∞ uR
λ

is a positive solution of (3.1) with the given λ. This completes the proof of
Theorem 3.1. �

In the next, we will show that under suitable conditions on g(u) and b(x), a
priori estimates (independent of R) for positive solutions of (3.3) with bounded
Morse index can be established. This, together with our results in Section 2,
will eventually enable us to show that equation (3.1) has at least one positive
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solution for λ = Λ, at least two positive solutions for λ ∈ (0,Λ), and at least one
positive solution for λ ≤ 0. Let us denote

Ω−
R := {x ∈ BR : b(x) < 0},

Ω+
R := {x ∈ BR : b(x) > 0},

Ω0
R := {x ∈ BR : b(x) = 0}.

Since b(x) is continuous, clearly, under assumption (3.2), for all R > R0, each of
these three sets is nonempty. Moreover, Ω−

R and Ω0
R are independent of such R.

So we may denote Ω− = Ω−
R and Ω0 = Ω0

R when R > R0. To establish the
required a priori estimates, we will need the following assumption:

(3.8) ∇b(x) 6= 0 for all x ∈ Ω0.

Theorem 3.4. Suppose that b(x) is C2 in RN and satisfies (3.2) and (3.8).
Moreover, suppose that g(u) is C1 on [0,∞) and satisfies

(G3) limu→∞ g′(u)/(quq−1) = l∞ ∈ (0,∞) for some q ∈ (1, N∗),

where N∗ = (N+2)/(N−2) when N ≥ 3, N∗ = ∞ when N = 1, 2. Then for any
given constant M > R0 and integer m ≥ 0, there exists a constant C = C(M,m)
such that any positive solution u of (3.3) with Morse index m(u) ≤ m and
R > M , |λ| ≤M satisfies

(3.9) ‖u‖L∞(BR) ≤ C.

Proof. This follows from a combination of the techniques in [4] and [23].
For any R > M , since we assume that b(x) ∈ C2(BR), by elliptic regularity,

the solutions of (3.3) belong to C2(BR). If (3.9) does not hold, then we can find
sequences Rn > M and λn ∈ [−M,M ] such that (3.3) with R = Rn and λ = λn

has a positive solution un satisfying m(un) ≤ m and ‖un‖L∞(BRn ) → ∞. Thus
there exists a sequence {xn} ⊂ BRn

such that

Mn := ‖un‖L∞(BRn ) = un(xn) →∞.

Since ∆un(xn) ≤ 0, the equation in (3.3) yields

(3.10) b+(xn)g(Mn) ≤MMn + b−(xn)g(Mn),

where b+ := max{b, 0}, b− := b+ − b.
Note that (G3) implies limu→∞ g(u)/uq = l∞. By (3.2) and (3.10), we see

that {xn} is bounded. Thus by passing to a subsequence, we can assume that
xn → x0. Using (3.10) again, we find that necessarily b(x0) ≤ 0 and hence
x0 ∈ BR0 .
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Now, the blow up argument used in the proof of Theorem 3.1 of [4] can be
applied. More precisely, for some suitable sequence µn → 0, define

vn(x) :=
u(µnx+ xn)

Mn
, x ∈ Ωn :=

1
µn

(BR0 − xn).

Then depending upon the location of x0 in Ωn, we can determine µn and show
that vn has a subsequence converging to a positive function v satisfying a limiting
problem on RN which, up to a translation and rescaling of v, is of the form

−∆v = vq, x ∈ RN ,(3.11)

or

−∆v = xNv
q, x ∈ RN .(3.12)

In the case of (3.11), due to the restriction on q, it is well known (see [16]) that
its only nonnegative solution is v ≡ 0, which yields a contradiction. In the case
of (3.12), it is shown in [4] that its only nonnegative solution is v ≡ 0 provided
that 1 < q < (N+2)/(N−1). However, the proof of Lemma 6 in [23] shows that
m(un) ≤ m implies v has finite index (in the sense defined in [23, p. 613]), which
in turn implies that v = 0 if 1 < q < N∗ (see Proposition 12 in [23]). Therefore,
we arrive at a contradiction in either case. This proves the theorem. �

Remark 3.5. An inspection of the above proof of Theorem 3.4 reveals that,
if we replace g(u) by a parameter dependent function gξ(u) with ξ belonging to
some index set A, and assume that (G3) is satisfied by gξ(u) uniformly in ξ ∈ A,
then (3.9) holds with C independent of ξ ∈ A. This observation will be useful
later.

An immediate consequence of Theorem 3.4 is the following existence result.

Theorem 3.6. Suppose that the assumptions in Theorems 3.1 and 3.4 hold,
and let Λ be as in Theorem 3.1. Then (3.1) has a positive solution for λ = Λ.

Proof. From the proof of Theorem 3.1 we see that for every λ ∈ (0,Λ) and
R > R∗, we have λ1(BR) < Λ, ΛR ≥ λ. It follows that ΛR ≥ Λ. Therefore (3.3)
with λ = Λ and R > R∗ has a minimal positive solution uR

Λ .
We claim that uR

Λ has Morse index 0. Otherwise, the first eigenvalue µ1 of
the problem

−∆u = Λu− b(x)g′(uR
Λ)u+ µu, u|∂BR

= 0

is negative. Let ψ1 denote the corresponding normalized positive eigenfunction.
Then it is easily checked that for sufficiently small δ > 0, u := uR

Λ − δψ1 is
a positive upper solution of (3.3) with λ = Λ. Since Λ > λ1(BR), for small
enough ε > 0, u := εφR is a lower solution satisfying u ≤ u, where φR denotes
the normalized positive eigenfunction corresponding to λ1(BR). Therefore, (3.3)
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with λ = Λ has a positive solution satisfying u ≤ u ≤ u. But this contradicts
the fact that uR

Λ is the minimal positive solution. This proves our claim.
We can now apply Theorem 3.4 to conclude that uR

Λ ≤ C for some C inde-
pendent of R. Hence U := limR→∞ uR

Λ is a nonnegative solution of (3.1) with
λ = Λ. From (3.5) we find that U ≥ uR

Λ on BR for every R. Therefore U is a
positive solution. �

Now we apply Theorems 2.1 and 2.2 to prove a crucial step towards our main
multiplicity result for (3.1).

Lemma 3.7. Let the conditions of Theorem 3.6 be satisfied and let ΛR, u
R
λ

be as in Propositions 3.2 and 3.3, and Λ as in Theorem 3.1. Then there exists
R̂ > 0 such that for each R > R̂ and λ < Λ, (3.3) has a positive solution ûR

λ

with the following properties:

(a) ûR
λ (x̂) > uR

Λ(x̂) for some x̂ ∈ BR,
(b) The Morse index m(ûR

λ ) ≤ 1.

Proof. Let us choose R̂ such that λ1(B bR) < Λ. As recalled in the proof
of Theorem 3.6 above, we have ΛR ≥ Λ > λ1(BR) when R > R̂. Therefore uR

Λ

exists for every R > R̂.
Let λ < Λ be fixed. Then clearly u := uR

Λ is an upper solution of (3.3) but
it is not a solution. On the other hand, u := 0 is a solution and hence a lower
solution to (3.3). Let g(u) be extended to u < 0 by g(u) = |u|q−1u and let

f(x, u) = λu+ b(x)g(u).

Then our conditions on g(u) guarantee that (2.2) and (2.3) are satisfied. If
we can show that the corresponding functional I(u) of (3.3) satisfies the (PS)
condition on the order interval [u,∞) = [0,∞) and there exists u0 ≥ u = uR

Λ

such that I(u0) ≤ infu∈[0,uR
Λ ] I(u), then we can apply Theorems 2.1 and 2.2 to

conclude.
As is widely known, due to the fact that b(x) changes sign, the (PS) condition

is difficult to verify directly. We adapt a truncation trick introduced in [23] to
overcome this difficulty.

Let aj be an increasing sequence of positive numbers such that aj →∞ and
a1 > ‖uR

Λ‖L∞(BR). Then define

gj(u) =

{
Aju

q +Bj for u ≥ aj ,

g(u) for u ≤ aj .

The coefficients are chosen in such a way that gj is C1.
We consider the modified problem

(3.13) −∆u = λu+ b(x)gj(u), u ∈ H1
0 (BR).
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The corresponding energy functional is given by

Ij(u) =
1
2

∫
BR

(|∇u|2 − λu2)−
∫

BR

bGj(u),

where Gj(u) :=
∫ u

0
gj(s) ds.

By our assumptions on aj , we find that u = 0 and u = uR
Λ are still lower

and upper solutions of (3.13). Moreover, for each j, the righthand side of (3.13)
satisfies (2.2) and (2.3). Let us check that Ij satisfies the (PS) condition. Indeed,
gj(u) clearly satisfies condition (b) in Lemma 1.5 of [1]. Moreover, (3.8) implies
that Ω0 is a C2-manifold of dimension N − 1. Therefore we can apply Lemma
1.5 of [1] to conclude that Ij satisfies the (PS) condition on H1

0 (BR).
Next we prove that there exists u0 ∈ H1

0 (BR) such that

(3.14) u0 ≥ u in BR, Ij(u0) ≤ inf
u∈[u,u]

Ij(u).

To this end, let φ be a nonnegative function in C∞0 (BR) with nonempty
support contained in some compact set S ⊂ Ω−. Then there exist positive
constants σ1, σ2 and σ3 such that

b(x) ≤ −σ1 for all x ∈ S,
Gj(u) ≥ σ2u

q+1 − σ3 for all u ≥ 0.

It follows that,

Ij(u+ tφ) =
1
2

∫
BR

[|∇u+ t∇φ|2 − λ(u+ tφ)2] +
∫

BR

b(x)Gj(u+ tφ)

=
1
2

∫
BR

[|∇u+ t∇φ|2 − λ(u+ tφ)2] +
∫

BR\S
b(x)Gj(u)

+
∫

S

b(x)Gj(u+ tφ)

≤ 1
2

∫
BR

[|∇u+ t∇φ|2 − λ(u+ tφ)2] +
∫

BR\S
b(x)Gj(u)

−
∫

S

σ1[σ2(u+ tφ)q+1 − σ3] → −∞

as t→∞. Therefore, we can choose t0 > 0 large enough such that u0 := u+ t0φ

satisfies (3.14). According to Theorems 2.1 and 2.2, Ij admits a critical point uj

with the properties

uj(xj) > u(xj) for some xj ∈ BR, and m(uj) ≤ 1.

Since g(u) satisfies (G3), it is easily checked that gj(u) satisfies (G3) uni-
formly in j ≥ 1. Therefore we can use Remark 3.5 (with fixed R and λ) to see
that there exists C0 independent of j such that ‖uj‖L∞(BR) ≤ C0 for all j ≥ 1.
We now fix j large enough so that aj > C0. Then clearly uj solves the original
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problem (3.3), and ûR
λ := uj meets the requirements (a) and (b) of our lemma.

This completes the proof. �

We are now ready to use Theorem 3.4 and techniques introduced in [13] to
prove our main existence and multiplicity result for (3.1).

We first recall two preliminary results in [13] in a slightly more general setting.

Lemma 3.8. Suppose that Rn is an increasing sequence converging to ∞
and Bn = BRn(0). Let λ > 0 be fixed and ξn be a sequence of positive numbers
converging to ξ > 0 as n → ∞. Suppose that g(u) is continuous and g(u)/u is
strictly increasing over [0,∞) with

lim
u→0+

g(u)
u

= 0, lim
u→∞

g(u)
uq

= l∞ ∈ (0,∞) for some q > 1.

Then, for all large n, the problem

(3.15) −∆u = λu− ξng(u) in Bn, u|∂Bn
= 0

and the problem

(3.16) −∆v = λv − ξng(v) in Bn, v|∂Bn = ∞

have unique positive solutions un and vn, respectively. Moreover,

un(x) → σ∗, vn(x) → σ∗,

uniformly on any bounded set of RN as n→∞, where σ∗ is the unique solution to
λσ∗− ξg(σ∗) = 0. Here and in what follows, by v|∂Bn

= ∞, we mean v(x) →∞
as d(x, ∂Bn) → 0.

Proof. The proof is the same as that for Lemma 4.3 of [13], but we need to
replace up by g(u) in Lemmas 2.2 and 2.3 of [15]. By our assumption on g(u),
this change does not cause any difficulties in the proof of these lemmas in [15].
So we omit the details. �

Lemma 3.9. Let λ > 0 be fixed, and Rn, ξn, g(u), σ∗ as in Lemma 3.8.
Denote by An the annulus {x ∈ RN : Rn/2 < |x| < Rn}. Then for all large n,
the problem

(3.17) −∆u = λu− ξng(u) in An, u|∂An = 0

and the problem

(3.18) −∆v = λv − ξng(v) in An, v|{|x|=Rn/2} = ∞, v|{|x|=Rn} = 0

have unique positive solutions un and vn, respectively. Moreover, un(x) =
un(|x|), vn(x) = vn(|x|), and if we define Un(r) = un(Rn + r) and Vn(r) =
vn(Rn + r) for r ∈ (−Rn/2, 0], then as n→∞,

(3.19) Un → Φ, Vn → Φ in C1([−T, 0]), for all T > 0,
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where Φ is the unique positive solution to

(3.20) −Φ′′ = λΦ− ξg(Φ), Φ(−∞) = σ∗, Φ(0) = 0.

Proof. This follows the proof of Lemma 4.4 in [13]; the only difference is
that we replace up by g(u). By our assumption on g(u), this change causes no
extra difficulty. We omit the details. �

The argument in Remark 4.5 of [13] leads now to the following.

Remark 3.10. If λ ≤ 0, then in Lemma 3.9, vn still exists and is unique.
Moreover, Vn converges to 0 in C1([−T, 0]) for all T > 0.

We can now state and prove our main result for (3.1).

Theorem 3.11. Suppose that the conditions of Theorem 3.6 are satisfied,
that is, b(x) is C2 and satisfies (3.2) and (3.8), g(u) is C1 for u ≥ 0 and satisfies
(G1), (G2) and (G3). Moreover, we assume that

lim
|x|→∞

b(x) = b∞ ∈ (0,∞),

and g(u)/u is strictly increasing over [0,∞). Then, (3.1) has at least two positive
solutions for each λ ∈ (0,Λ), and at least one positive solution for each λ ≤ 0.

Proof. Let λ ∈ (0,Λ) be fixed. By the last part of the proof of Theorem 3.1
we see that the minimal positive solution uR

λ of (3.3) exists for all large R, and
limR→∞ uR

λ is a positive solution of (3.1). Let us denote this solution by Uλ.
Then it follows from (3.5) that Uλ1 ≤ Uλ2 when λ1 < λ2. Moreover, it is easily
checked by using the strong maximum principle that actually Uλ1(x) < Uλ2(x),
for all x ∈ RN , when λ1 < λ2. Though it is not needed in the discussions to
follow, let us also mention that Uλ is the minimal positive solution of (3.1), due
to the properties of uR

λ .
We now set to find a second positive solution for such λ. Let Rn > R̂

be an increasing sequence converging to ∞, where R̂ is as in Lemma 3.7. By
Lemma 3.7, for each n ≥ 1, we can find ûn := ûRn

λ which solves (3.3) with
R = Rn and has the properties (a) and (b) in Lemma 3.7. By Theorem 3.4,
we can find C > 0 independent of n such that ‖ûn‖L∞(BRn ) ≤ C. By standard
argument, this implies that subject to a subsequence, ûn → Ûλ uniformly on
compact subsets of RN , and Ûλ solves (3.1). Since ûn ≥ uRn

λ , we necessarily
have Ûλ ≥ Uλ, and hence Ûλ is a positive solution of (3.1).

It remains to show that Ûλ 6≡ Uλ. We will make use of property (a) in
Lemma 3.7 for ûn and proceed as in [13]. So the argument below will be rather
sketchy. Let xn ∈ BRn be such that

(3.21) ûn(xn) > uRn

Λ (xn).
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Then as in the proof of Theorem 4.6 in [13], we can use Lemmas 3.8 and 3.9 to
conclude that {xn} is bounded. Let B be a finite closed ball in RN that contains
all xn and suppose by contradiction that Ûλ = Uλ. Then we have

(3.22) ûn(x) → Uλ(x)

uniformly on any bounded set of RN .
On the other hand, since Λ > λ > 0 and B is compact, there exists ε > 0

such that, UΛ(x) ≥ Uλ(x) + ε for all x ∈ B. Therefore, for all large n, uRn

Λ (x) ≥
Uλ(x) + (1/2)ε for all x ∈ B. It follows from (3.21) that, ûn(xn) > uRn

Λ (xn) ≥
Uλ(xn)+ (1/2)ε for all n ≥ 1. But this contradicts (3.22). This proves Ûλ 6≡ Uλ.

It remains to consider the case λ ≤ 0. Fix λ ≤ 0 and consider v̂n := ûRn

λ ,
whose existence is guaranteed by Lemma 3.7. As in the previous case, we can
apply Theorem 3.4 to conclude that ‖v̂n‖L∞(BRn ) has a bound independent of n.
It follows as before that, up to a subsequence, v̂n converges to some V̂λ uniformly
on compact subsets of RN . Moreover, V̂λ is a nonnegative solution of (3.1). As
in the proof of Theorem 4.6 in [13], due to property (a) (as in Lemma 3.7) of
v̂n, we can make use of Lemmas 3.8, 3.9 and Remark 3.10 to show that V̂λ 6≡ 0.
By the strong maximum principle, we must have V̂λ > 0 in RN . Hence it is a
positive solution of (3.1). This completes the proof of Theorem 3.11. �

Remark 3.12. The alternative proof presented at the end of the proof of
Theorem 4.6 in [13] for the case λ < 0 can be easily adapted to our situation
here. Therefore, the conditions in Theorem 3.6 are enough for the existence of
a positive solution for (3.1) with λ < 0.
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