Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Recursive coboundary formula for cycles in acyclic chain complexes
  • Strona domowa
  • /
  • Recursive coboundary formula for cycles in acyclic chain complexes
  1. Strona domowa /
  2. Archiwum /
  3. Vol 18, No 2 (December 2001) /
  4. Articles

Recursive coboundary formula for cycles in acyclic chain complexes

Autor

  • Tomasz Kaczyński

Słowa kluczowe

Homology computation, cycle, coboundary, algorithm

Abstrakt

Given an $(m-1)$-dimensional cycle $z$ in a finitely generated acyclic chain complex, we want to explicitly construct an $m$-dimensional chain $\cob(z)$ whose algebraic boundary is $z$. The acyclicity of the chain complex implies that a solution exists (it is not unique) but the traditional linear algebra methods of finding it lead to a high complexity of computation. We are searching for more efficient algorithms based on geometric considerations. The main motivation for studying this problem comes from the topological and computational dynamics, namely, from designing general algorithms computing the homomorphism induced in homology by a continuous map. This, for turn, is an essential step in computing such invariants of dynamical properties of nonlinear systems as Conley index or Lefschetz number. Another potential motivation is in the relationship of our problem to the problem of finding minimal surfaces of closed curves.

Pobrania

  • FULL TEXT (English)

Opublikowane

2001-12-01

Jak cytować

1.
KACZYŃSKI, Tomasz. Recursive coboundary formula for cycles in acyclic chain complexes. Topological Methods in Nonlinear Analysis [online]. 1 grudzień 2001, T. 18, nr 2, s. 351–371. [udostępniono 5.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 18, No 2 (December 2001)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa