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RECURSIVE COBOUNDARY FORMULA
FOR CYCLES IN ACYCLIC CHAIN COMPLEXES

Tomasz Kaczynski

Abstract. Given an (m − 1)-dimensional cycle z in a finitely generated
acyclic chain complex, we want to explicitly construct an m-dimensional

chain Cob(z) whose algebraic boundary is z. The acyclicity of the chain

complex implies that a solution exists (it is not unique) but the traditional
linear algebra methods of finding it lead to a high complexity of compu-

tation. We are searching for more efficient algorithms based on geomet-

ric considerations. The main motivation for studying this problem comes
from the topological and computational dynamics, namely, from designing

general algorithms computing the homomorphism induced in homology by

a continuous map. This, for turn, is an essential step in computing such
invariants of dynamical properties of nonlinear systems as Conley index

or Lefschetz number. Another potential motivation is in the relationship
of our problem to the problem of finding minimal surfaces of closed curves.

1. Introduction

The following problem is addressed in this paper: Given a (m−1)-dimensional
cycle z in a finitely generated acyclic chain complex (C, ∂) explicitly construct a
m-dimensional chain c = Cob(z) called here coboundary of z such that

(1) ∂c = z.
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The hypothesis that C is acyclic guarantees the existence of a solution which, in
general, is not unique. In applications from which the problem came, C is a chain
complex associated with a convex or star-shape polyhedron via triangulations or
cubical subdivisions. Thus we know that C is acyclic without having explicitly
computed its homology. The problem of solving equation (1) for c may however
lead to heavy calculations due to a possibly very large number of cells (e.g.
simplexes or cubes) generating the space Cm.

The main motivation for studying this problem comes from the topologi-
cal and computational dynamics, namely, the need for designing general algo-
rithms computing the homomorphism induced in homology by a continuous map
f :X → Y , where X and Y are polyhedral subsets of Rn. The homomorphism in
homology serves, among others, for finding Conley Index or Lefschetz Number
which are invariants of certain dynamical properties of nonlinear systems. This
problem was addressed, among others, in [1], [10], [15], [16].

Numerical analysis of f leads to point-to-set maps F :X ⇒ Y with the prop-
erty f(x) ∈ F(x) for all x. These maps, called multivalued representations of f
belong to the class of maps extensively studied by [8], [9], and their followers.
The values F(x) of those maps are acyclic polyhedral subsets of X, they are
constant on open cells (open simplexes or open cubes) and their values on faces
of an open cell are contained in the value on that cell. Those properties im-
ply that F is a geometric realization of an abstract scheme called acyclic career
([17]). The proof of the Acyclic Career Theorem ([17]) permits an algorithmic
construction of a so called chain selector ϕ:C(X)→ C(Y ) of F in [1] under the
condition that we have an algorithm for solving equation (1). Once the chain
map on chain complexes is constructed, we may use a very efficient program for
computing the homomorphism in homology, which was designed by [18], [19] and
based on the algorithm given in [12].

Another potential motivation for studying this problem is in the fact that
it is related to the problem of minimal surfaces of closed curves. This problem
arising from differential geometry and calculus of variations (c.f. [7]) became
now one of central problems of computational geometry. A particular case of a
minimal surface is a Seifert surface (c.f. [4]) which is a surface (possibly with
self-intersections) of minimal area enclosing a given knot in the space. A knot K
is a diffeomorphic embedding of the circle S1 to R3 (at least, in the classical real
space formulation). This is a very hard problem intensely studied and we do not
claim that our coboundary construction is an important step in this direction.
However, there is a similarity which gives some hope that what we do may be
eventually useful here when combined with other tools. This is how the two
problems can be related:
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Let C be a polygonal closed curve with consecutive vertices

v0, v1, . . . , vn−1, vn = v0

which approximates a given knot K. The first rough attempt would be to take a
convex hull of all vertices of C and triangulate it. Then the support of the cycle

z := [v0, v1] + . . .+ [vn−1, v0]

is C. If we solve equation (1), the support S of c will be a two-dimensional surface
whose one-dimensional skeleton contains C. Obviously we have no guarantee that
our surface is close to a minimal surface of K but maybe the search for an optimal
triangulation and the best solution of (1) can be somewhat refined.
In [1] two possible methods of constructing coboundaries were indicated for

the case of cubical complexes. One, referred to as the algebraic construction is
by solving systems of over-determined linear equations with integer coefficients
by matrix algebra methods. That method was implemented in [14]. Another
one, referred to as the geometric construction, was already indicated in [1] and
completed in [2]. It is designed for cubical complexes only because it is based
on the structure of cells as products of unitary intervals. The first method is
potentially universal but the matrix algebra makes it not nearly as efficient as
the geometric algorithm in [2] whose complexity is linear with respect to number
of generators in the support of z.
In this paper, we develop a new universal method which combines ideas

coming from [1], [2] together with the algorithm for computing homology of
chain complexes presented in [12] which we shall call here the KMS reduction
algorithm. The work on improvement of the data structure for our prototype
algorithm is in progress so we cannot yet analyze the computational complexity.
We expect that, in general, it could be as high as the complexity of the KMS
reduction algorithm in [12] and the matrix algebra algorithm of [14] which should
be close to O(n3) where n is the number of generators involved. In fact, what we
do here could be presented as a successive row reduction of large matrices. We
believe however, that the ability of expressing the construction in the geometric
language is very important for improving the data structure in the future. We
already noticed some particular cases as exterior face collapses in [13] where
the procedure is much more efficient than in general. Thus we emphasize the
importance of seeing the geometry behind the algebra.
Although there is an extensive literature on the geometric problem of finding

minimal surfaces, the algebraic coboundary statement (1) in arbitrary dimension
addressed in this paper is very young: To the author’s best knowledge, it has not
been studied from the computational point of view prior to already cited [1], [2].
If the homology computation in low dimensions (polyhedra in R3) is of concern,
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the most efficient known method is due to [5]. More discussion on the problems
and application of computational topology can be found in [6].

The contents is organized as follows. We wish to make this paper accessible
to a reader with no extensive abstract algebra or algebraic topology background.
Thus Section 2 contains an overview of basic definitions and necessary results on
chain complexes and their homology. In Section 3 simple illustrative examples
of the main construction are given. We believe that presenting them before we
give the general construction will make the rest more readable. In Section 4 we
present a modified version of the KMS reduction procedure given in [12]. The
modification is aimed at applying it to our problem. In Section 5 we present the
theorems and prototype algorithm for solving equation (1). We finish Section 5
with several remarks on related questions.

2. Preliminaries from algebraic topology

The nature of algebraic operations in chain complexes performed in this paper
is that if they are valid for integer scalars then they are also valid for scalars in
any field F . Hence the first case is the most general but some of the presented
constructions require assuming field coefficients. When those constructions are
generalized for integer scalars, their computational complexity increases since we
are not allowed to divide. For those reasons we shall consider coefficients in a
commutative ring R with unity. A reader who is unfamiliar with the ring theory
may assume that R is either Z or a field F since these are the only cases of our
interest.

Definition 2.1. A sequence (C, ∂) = ({Cq}q∈Z, {∂q : Cq → Cq−1}q∈Z) is a
finitely generated free chain complex with coefficients in R if

(a) each Cq is a finitely generated free module overR (a finitely dimensional
vector space if R is a field and a finitely generated free Abelian group
if R = Z),

(b) Cq = 0 for all but finitely many q ∈ Z,
(c) the map ∂q : Cq → Cq−1 is a linear map (a group homomorphism if
R = Z) satisfying the property

(2) ∂q∂q+1 = 0

for each q ∈ Z.

The elements of Cq are called chains or, more precisely, q-chains and the map
∂q is called the boundary map.

For simplicity of notation we shall write C for (C, ∂) understanding that we
know what is the boundary map and we shall avoid indices q whenever they are
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clear from the context. For example, equation (2) may be written shorter as
∂2 = 0.
We should mention that the formal Homological Algebra definition of chain

complexes with coefficients in R is given via tensor products. If C is a chain
complex with coefficients in Z then the corresponding chain complex with co-
efficients in R is (C ⊗ R, ∂ ⊗ idR). Since we want our paper be accessible to
readers without the abstract algebra background, we shall avoid referring to ten-
sor products. Our definition is equivalent in the context of this paper. The
advantage of the formal definition is that it permits studying what happens with
chain complexes when a coefficient ring is changed.
The best known example of a finitely generated chain complex is the simpli-

cial complex of a triangulated polyhedron P . The exact definition of a simplicial
complex can be found in any standard Algebraic Topology textbook, e.g. in [17].
Another example of a finitely generated chain complex is the cubical complex
C(X) lectured in [11], also briefly presented in [1], [2]. A cubical polyhedron
X ∈ Rn is a finite union of so called elementary cubes Q ∈ Rn defined by

Q = I1 × . . .× In

where Ij is an interval with integer endpoints of length 0 or 1. More precisely,
Ij either {k} or [k, k + 1], for some k ∈ Z. In the cubical complex C(X),
Cq(X) is generated by all q-dimensional elementary cubes of X. The boundary
operator is defined on each elementary q-dimensional cube as an alternating sum
of their (q− 1)-dimensional faces with any two opposite parallel faces appearing
with opposite signs. The cubical complexes naturally arise from the problem
of numerical approximation of continuous maps [16], [15] and they have nice
properties which simplicial complexes do not have. The problem of orientation
of generators does not appear since the linear order on each coordinate axis and
the orientation of the canonical basis implicitly impose the choice of Q as the
positive generator. The Cartesian product structure is very convenient too. For
example a product of elementary cubes is an elementary cube in the product
space but a product of simplexes is not a simplex. Finally, any polyhedron does
not need to be a cubical set but it is homeomorphic to a cubical set.
Let’s now go back to the general chain complex C. A chain z ∈ Cq is called a

cycle or, more precisely, a q-cycle if ∂z = 0. A chain z ∈ Cq is called a boundary
if there exists c ∈ Cq+1 such that ∂c = z. The set of all q-cycles is the submodule
Zq := ker ∂q of Cq while the set of all boundaries is the submodule Bq := im ∂q+1.
Equation (2) implies that

im ∂q+1 ⊂ ker ∂q
and hence the quotient

Hq(C) := ker ∂q/im ∂q+1
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called the q-th homology module of the chain complex C is well defined. The
homology of C is the sequence

H∗(C) := {Hq}q∈R.

The equation (2) implies that each ∂q induces the trivial map

∂′q:Hq(C)→ Hq−1(C), ∂′q = 0

on quotient groups. Thus the homology sequence H∗(C) may also be viewed
as a chain complex called the homology complex of C with the trivial boundary
operators. Conversely, if in some chain complex C we have ∂q = 0 for all q, then
H∗(C) = C. This simple observation is crucial for the algorithm we are going to
present in the next section.
For a reader who never heard about homology, we should just mention what is

the geometric interpretation of the homology groups of a polyhedron P . A lot of
information can be extracted just from the dimension βq of the free component
of the module Hq. This number is called the q’th Betti number of P . Thus
β0 is the number of connected components of P , β1 the number of nontrivial
fundamental (i.e. generic) loops in P and, if P ⊂ R3, β2 is the number of “holes”
in P (think about holes in a brick of Ementaler cheese). A non-free component,
called the torsion would appear in higher dimensions only (e.g. in the projective
plane) when a cycle is not a boundary but its multiplicity is a boundary.
A chain complex C is acyclic if H∗(C) = 0. Note that there is a subtlety in

relating acyclic topological spaces to acyclic chain complexes. A polyhedron is
called acyclic if it has the same homology as a point. The homology of a point
p, however is not all trivial:

Hq({p}) =

{
0 if q 6= 0,
R if q = 0.

A triangulated polyhedron P is called acyclic if its reduced homology H̃∗(P ) is
equal to 0. If C is a simplicial complex of P , this is equivalent to saying that
the augmented chain complex (C̃, ∂̃) is acyclic where

C̃q =

{
Cq if q 6= −1,
R if q = −1,

and

∂̃q =

{
∂q if q 6= 0,
ε if q = 0,

where the map ε:C0 → R called the augmentation map is given on vertices by
εv := 1 for all vertex v. It is easily seen that the 0-cycles of C̃ are generated
by chains v − u where u, v are vertices. The reduced homology of P is defined
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by H̃∗(P ) = H∗(C̃). The acyclicity of C̃ implies, in particular, that any two
vertices can be connected by a path of edges.

The same applies to cubical chain complexes.

A tool of comparing different chain complexes and their homologies is a chain
map. A linear map ϕ:C → C ′ = {ϕq : Cq → C ′q}q∈Z is a chain map if, for every
q ∈ Z,

(3) ∂qϕq = ϕq−1∂q.

Any chain map ϕ maps cycles to cycles and boundaries to boundaries. That
implies that the quotient map ϕ∗:H∗(C)→ H∗(C ′) is well defined. Moreover, if
ϕ:C → C ′ and ψ:C ′ → C ′′, then

(4) (ψϕ)∗ = (ψ)∗(ϕ)∗.

Studying topological properties of spaces we only need to know its homol-
ogy complex up to an isomorphism. A way of proving that two complexes
have isomorphic homologies is by chain homotopies and chain equivalences. Let
ϕ,ψ: (C, ∂)→ (C ′, ∂′) be chain maps. A collection of linear maps Dq:Cq → C ′q+1
is a chain homotopy between ϕ and ψ if for all q

∂′q+1Dq +Dq−1∂q = ψ − ϕ.

We will need the following well known result

Lemma 2.2. If there exists a chain homotopy between ϕ and ψ, then

ϕ∗ = ψ∗.

A chain map ϕ:C → C ′ is called a chain equivalence if there exists a chain
map ψ:C ′ → C such that ψϕ = idC and ϕψ = idC′ .

We shall use the following consequence of Lemma 2.2 and (4):

Theorem 2.3. If ϕ:C → C ′ is a chain equivalence then ϕ∗:H∗(C) →
H∗(C ′) is an isomorphism.

3. Simple examples

The aim of this section is to develop geometric intuitions which will help to
understand the general procedures introduced in the next section.

In all examples the ring of scalars is Z. We base the examples on the simplicial
chain complex C of the square on Figure 1(i). Thus C0 is generated by the set
of vertices E0 := {A,B,C,D}, C1 by edges E1 := {a, b, c, d} oriented as on



358 T. Kaczynski

Figure 1(i), and C2 by triangles E2 := {S, T} with clockwise orientation. The
only nontrivial boundary maps are ∂1 and ∂2 defined as follows.

∂1: a 7→ B −A, ∂2: S 7→ e− b− a,
b 7→ C −B, T 7→ d+ c− e.
c 7→ C −D,
d 7→ D −A,
e 7→ C −A,

Note that a, b, c, d are exterior or free edges, in the sense any one each of them
is an edge of an exactly one triangle. The edge e is an interior edge in the sense
that it is a common edge of more then one triangle.

Example 3.1 (Exterior face collapses). Imagine that we push a from outside
so that S collapses onto the remaining part of its boundary formed of e and b.
Then a is projected to the chain e− b and S disappears. No new homologically
nontrivial cycle is created by the fact that S disappears since the image of the
cycle ∂S = −a+ e− b is −(e− b) + e− b = 0. This indicates that the homology
of the complex C obtained by projections of generators a 7→ e− b, S 7→ 0 should
be the same as that of C. The new complex C illustrated on Figure 1(ii) is a
subcomplex of C with bases E0 := E0, E1 := {b, c, d, e} and E2 := {T}. By
repeating the same with the edge e and triangle T , we get a one-dimensional
complex C illustrated on Figure 1(iii). The same procedure can be repeated for
a free vertex and its unique edge, so C can be reduced in next three collapsed to
a single vertex.

�(i)A B

D C

a

c

d b

T

e

S

�(ii)A B

D Cc

d b

T

e

�(iii)A B

D Cc

d be

Figure 1. Exterior edge collapses

Example 3.2 (Interior face reduction). Let’s go back to the initial complex
C. The edge e is common to S and T so the previous procedure does not apply
to it. However, we may eliminate it from the boundaries by adding equations
for ∂S and ∂T :

∂S + ∂T = ∂(S + T ) = e− b− a+ d+ c− e = d+ c− b− a.



Recursive Coboundary Formula 359

This may be visualized as follows: Imagine that e is collapsed as before through
T until it is projected onto d + c. Then e drags S along with it so S takes the
whole space inside the square. Thus we have the projections

e 7→ d+ c, S 7→ S := S + T, T 7→ 0.

The new complex C is generated by E0 = E0, E1 = {a, b, c, d} and E2 = {S}. It
still is a subcomplex of C since S = S+T but it is no longer a simplicial complex.
If we want to continue reductions in the same dimension, we can now collapse
the exterior edge a through the square S until it is projected to d+ c− b. That
gives the same complex C as in the previous example, pictured on Figure 1(iii).
An alternative is to continue interior reduction in the lower dimension to remove
vertices common to two edges. Another example of this kind is given in [12].

�(i)A B

D

a

c

d b

T

S

�(ii)A

c

b

T

S

�(iii)A

c

T

�A(iv)
Figure 2. Starting from a vertex reduction

Example 3.3 (Interior vertex reduction). Face reductions may also be per-
formed starting from the lowest dimension. Imagine that we push the vertex C
along the edge e so it projects to the vertex A. The edge e disappears. If we
want to do that without moving interiors of S and T , we must drag the edges b
and c with the vertex C along −e, so we get projections

C 7→ A, e 7→ 0, b 7→ b := b− e, c 7→ c := c− e.

This is a purely algebraic operation but Figure 2(i) shows a geometric interpre-
tation of it. Note that the new edges b and c follow the same path for a while.
Project in a similar way B to A along a and D to A along d. Thus

B 7→ A, a 7→ 0, b 7→ b := a+ b = a+ b− e,

and

D 7→ A, d 7→ 0, c 7→ c := d+ c = d+ c− e.

This is illustrated on Figure 2(ii). Next, b is the free edge of S and so the external
collapse applies to this pair and we get what is pictured on Figure 2(iii). We do
the same with c which is the free edge of T and we get the single point A.
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The next examples are aimed at illustrating the construction of a coboundary
Cob(z) of a 1-cycle z given in the same complex C as above. Thus Cob(z) should
satisfy ∂ Cob(z) = z. It will be easy to guess what Cob(z) is by looking at
Figure 1(iii) but we shall follow the algebraic formula which will be given in the
next section and give its geometrical interpretation.

Example 3.4. Let z = a+b−c−d. We follow the path of z while collapsing
edges as in Example 3.1. The first collapse projects a to a = e − b, thus z is
projected through S to z = (e− b) + b− c− d = e− c− d. Observe that

z − z = a+ b− e = −∂S = ∂(−S).

We next follow the path of z when e is collapsed through T to e = d+ c. Then
z is projected to

z = (d+ c)− c− d = 0.
Let’s ignore this for instance and observe that z − z = −∂T = ∂(−T ). Thus

z = z − z = z − z + z − z = ∂(−S) + ∂(−T ) = ∂(−S − T ).

Thus Cob(z) = −S − T is a solution of ∂ Cob(z) = z.

Example 3.5. Exterior collapses are not always possible so we will see what
happens to a cycle when interior face reduction is performed as in Example 3.2.
The previously considered cycle is not very interesting since reducing e doesn’t
change z and the second operation is a collapse already described.
Let z = a+ b− e. When the first reduction in Example 3.2 is applied (which

is a bad choice but we pretend that we do not see the picture), e is projected to
e = d+ c so z is projected to z = a+ b− d− c. We have

z − z = a+ b− e− a− b+ d+ c = d+ c− e = ∂T.

We now follow the path of z while collapsing a through S = S + T . Then
a 7→ a = d+ c− b and z 7→ z = d+ c− b+ b− d− c = 0. Again, z− z = −∂S so

z = z − 0 = z − z + z − z
= ∂T + ∂(−S) = ∂T + ∂(−S − T ) = ∂(T − S − T ) = ∂(−S),

hence Cob(z) = −S is a solution of ∂ Cob(z) = z.

It is visible from Example 3.5 that computing coboundaries by interior face
reductions can get more complicated than by exterior face collapses since there
are changes of bases. Moreover, we had to express new S back in terms of S and
T hence those two generators cannot be removed from the data structure after
performing the reduction. Fortunately, one can prove that, in cases to which we
shall apply our results, the external face collapses are sufficient.
Finally, we note that a coboundary of a cycle is not always unique:
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Example 3.6. Let z = C − A, Then z ∈ C̃ is an augmented cycle, i.e. a
solution of the equation ε(z) = 0 (see the comment on reduced homology in the
previous section). Then z = ∂(d+ c) = ∂(a+ b).

We refer the reader to [2] for an example of a coboundary construction of a
1-cycle in a three dimensional cube.

4. Modified KMS reduction procedure

Let now (C, ∂) = ({Cq}q∈Z, {∂q}q∈Z) be a finitely generated free chain com-
plex with coefficients in a given commutative ring R with unity. Let n0 and N
be, respectively, the least and the greatest value of q such that Cq 6= 0. Most
commonly, n0 = 0 but, for example, in an augmented simplicial or cubical chain
complex we have no = −1. Let dq := dimCq := card(Eq) for each q.
Assume that a fixed base Eq of Cq is given for each q such that Cq 6= 0, we

shall call it the canonical basis of Cq. Let 〈 · , · 〉 denote the associated scalar
product, i.e. the bilinear form Cq × Cq → R defined on generators by

〈e, e′〉 :=

{
1 if e = e′,

0 otherwise,

where e, e′ ∈ Eq. Given c ∈ Eq, the generators e ∈ Eq−1 such that 〈∂c, e〉 6= 0 are
called faces of c. The number 〈∂c, e〉 is called the incidence number of e in ∂c.
Let m ∈ Z be a fixed number. Assume that a ∈ Em−1 and b ∈ Em are two

fixed elements such that λ := 〈∂b, a〉 is invertible in R. Thus ∂b can be written
as

∂b = λa+ r,

where 〈a, r〉 = 0. Let

Em−1 = {a1, . . . adm−1−1, a}, Em = {b1, . . . bdm−1, b}.

We shall write r as

r =
dm−1−1∑
i=1

αiai.

For any q ∈ Z, define a map pq:Cq → Cq by the formula

(7) pqv :=


v − λ−1〈v, a〉∂b if q = m− 1,
v − λ−1〈∂v, a〉b if q = m,
v otherwise,

where v ∈ Cq. We let Cq := im pq be the image of Cq in pq.
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Proposition 4.1. The map pq is a linear projection of Cq onto its image
Cq. More precisely, it is a linear map with the property pqw = w for all w ∈ Cq.

Proof. The linearity of pq is obvious since the maps ∂ and 〈 · , a〉 are linear.
The second conclusion is equivalent to the identity p2q = pq. This is trivial if
q 6∈ {m− 1,m}.
Let q = m− 1 and v ∈ Cm−1. Put α := 〈v, a〉. Then

p2m−1v = pm−1(v − λ−1α∂b) = v − λ−1α∂b− λ−1〈v − λ−1α∂b, a〉∂b
= v − λ−1α∂b− λ−1α∂b+ λ−2αλ∂b = pm−1v.

Let q = m and v ∈ Cm. Put β := 〈∂v, b〉. Then

p2mv = pm(v − λ−1βb) = v − λ−1βb− λ−1〈v − λ−1βb, a〉b
= v − λ−1βb− λ−1βb+ λ−2βλb = pmv. �

Note that the above projection is not an orthogonal projection. We should
explicitly identify the images of the basic elements under pm−1 and pm. For
simplicity of notation we put v := pqv and γi := λ−1〈∂bi, a〉. It is easily seen
that

ai = ai, a = −λ−1r,(8)

bi = bi − γib, b = 0.(9)

Note that the vectors listed in (8) are columns of the matrix of pm−1 with
respect to the canonical basis and those listed in (9) are columns of pm. In
matrix notation,

(10) pm−1 =


1 0 0 . . . 0 −λ−1α1
0 1 0 . . . 0 −λ−1α2
...
...
...
. . .

...
...

0 0 0 . . . 1 −λ−1αdm−1−1
0 0 0 . . . 0 0


and

(11) pm =


1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...
. . .

...
...

0 0 0 . . . 1 0
−γ1 −γ2 −γ3 . . . −γdm−1 0

 .
We put

(12) Eq =


{b1, . . . bdm−1} if q = m,

{a1, . . . adm−1−1} if q = m− 1,
Eq otherwise.
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Proposition 4.2. Eq is a basis for Cq for all q ∈ Z and Em∪{b} is a basis
for Cm.

Proof. The conclusion is trivial for q 6∈ {m − 1,m}. For q = m − 1 and
q = m, it is enough to apply a standard matrix algebra argument to matrices
in (10) and (11). �

Theorem 4.3. The sequence of projections p := {pq}q∈Z:C → C is a chain
map.

Proof. We need to show that ∂qpq = pq−1∂q for all q. This is obvious for
q 6∈ {m− 1,m,m+ 1}.
Let q = m− 1 and v ∈ Cm−1. Then

∂pm−1v = ∂(v − λ−1〈v, a〉∂b) = ∂v − λ−1〈v, a〉∂2v = ∂v

because ∂2 = 0. On the other hand pm−2∂v = ∂v since pm−2 = id .
Let q = m and v ∈ Cm. Then

∂pmv = ∂(v − λ−1〈∂v, a〉b) = ∂v − λ−1〈∂v, a〉∂b = pm−1∂v.

Let q = m+ 1 and v ∈ Cm+1. Then

pm∂v = ∂v − λ−1〈∂2v, a〉b = ∂v

because ∂2 = 0. On the other hand ∂pm+1v = ∂v since pm+1 = id . �

Corollary 4.4. The sequence (C, ∂) := {(Cq, ∂q)q∈Z} is a chain subcom-
plex of (C, ∂) and the restriction p:C → C of the codomain of p to its image is
a chain map.

Proof. The second conclusion follows from the first one and from Theo-
rem 4.3. We have to show that ∂ is well defined on C i.e. that ∂(Cq) ⊂ Cq−1 for
all q. Indeed, by Theorem 4.3 we have

∂(Cq) = ∂pq(Cq) = pq−1∂(Cq) ⊂ pq−1(Cq−1) = Cq−1. �

Theorem 4.5. H∗(C) ∼= H∗(C).

Proof. We will show that p:C → C is a chain equivalence with the inclusion
i:C ↪→ C as a homotopical inverse. Indeed, by Proposition 4.1, p is a projection
so pi = idC . Hence it is sufficient to find a chain homotopy between ip = p and
idC . Let Dq:Cq → Cq+1 be given by

Dq =

{
λ−1〈v, a〉b if q = m− 1,
0 otherwise,

for any v ∈ Cq. We need to show the identity

(13) idCq − iqpq = ∂q+1Dq +Dq−1∂q.
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This is obvious if q 6∈ {m − 1,m} since, in that case, both sides are 0. Let
q = m− 1 and v ∈ Cm−1. Then

v − pm−1v = v − (v − λ−1〈v, a〉∂b) = λ−1〈v, a〉∂b.

On the other hand

∂Dm−1v +Dm−2∂v = ∂Dm−1v = ∂(λ−1〈v, a〉b) = λ−1〈v, a〉∂b,

so the identity holds.
Let q = m and v ∈ Cm. Then

(14) v − pmv = v − (v − λ−1〈∂v, a〉b) = λ−1〈∂v, a〉b.

On the other hand

∂Dmv +Dm−1∂v = Dm−1∂v = λ−1〈∂v, a〉b.

so the identity holds. �

Let now

C0
p1−→ C1

p2−→ C2 −→ · · ·
be a sequence of chain subcomplexes and projections obtained from (C, ∂) by
iterating the above construction as long as it is possible to choose m ∈ {n0, n0+
1, . . . , N}, a ∈ Cm−1 and b ∈ Cm such that λ := 〈∂b, a〉 is invertible. Thus
C0 := C, Ck+1 := C

k
and Ek+1q := E

k

q for all q ∈ Z. We denote by ∂k the
restriction of ∂ to Ck.
Denote byM(k) =

∑
q card (E

k
q ), for k = 0, 1, 2, . . . Since C is finitely gener-

ated, M(k) <∞ andM(k+1) =M(k)−2, therefore there exists a final element
of that sequence denoted by (Cf , ∂f ), beyond which the construction cannot be
extended.

Theorem 4.6. If R is a field, then ∂f = 0 and H(C) ∼= H(Cf ) = Cf .

Proof. The identity H(C) = H(Cf ) follows from Theorem 4.5 by induc-
tion. If R is a field then λ is invertible if and only if and only if it is non-zero.
Hence the construction can be iterated as long as there exist m and two elements
a ∈ Ekm−1 and b ∈ Em satisfying 〈∂b, a〉 6= 0 i.e. as long as ∂ 6= 0. Therefore
∂f = 0. But this means that H(Cf ) = Cf . �

Remark 4.7. Our construction is very similar to the one presented in [12].
An important difference is that, in [12], a new chain complex (C, ∂) is not a
subcomplex of (C, ∂) as it is here: The basic elements bi complementing b are left
the same but the boundary operator is redefined. Thus a completely new complex
is created. That permits removing unnecessary data from the data structure and
decides about the effciency of the KMS algorithm. However, from the point of
view of computing the coboundary of a cycle, this imposes a problem. Our new
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version of the KMS construction permits easily expressing new generators in
terms of the original basis and this is exactly what we shall need in the next
section. When the computation of homology up to an isomorphism is the only
goal, a data structure can be found which will give the same algorithm for our
construction as for the previous KMS construction.

Remark 4.8. Another difference between the presented construction and
the one in [12] is that the KMS algorithm performs the reductions starting from
the highest dimension q = N down to the lowest q = n0 whereas we do not
impose that order here. The choice of the order in [12] was motivated by the belif
that this would give the lowest complexity in the general case. It is uncertain,
however, whether or not a different order could be more efficient in particular
cases. If we try to simultanously use this procedure with the procedure of finding
a chain selector of an acyclic-valued map, it is the order from the lowest to the
highest dimension which is imposed.

Remark 4.9. The presented procedure produces the homology complex
when R is a field. The case of coefficients in a ring with unity where the Eu-
clidean algorithm for division with reminders is valid (Z is an example of such
a ring), the KMS algorithm has been generalized by [18] and the same applies
to the modified version presented here. The computation complexity is much
higher in that case. In some special cases, even if the (C, ∂) is a chain complex
with coefficients in Z, there are abstract theorems which imply that the homolo-
gies, whatever they are, must be free abelian groups, i.e. Hq ∼= Zβq for all q. The
exponent βq is called the q’th Betti number of C. This is the case, for example,
when C is a complex of a graph, of a polyhedron in R2, or of a manifold in R3.
Thus when homology is free, it is enough to determine the Betti numbers. In
that case, there is a theorem which says that

H(C)⊗R ∼= H(C ⊗R),

and we have Z ⊗R ∼= R. We purpousely avoided talking about tensor product
but an elementary way of saying the same is the following: If we know that the
homology is free, we do the calculation over a field Z2, where the computing time
is the lowest, and the dimension of the vector space Hq(C,Z2) must be the same
Betti number βq. Of course, Z2 might not give us an appropriate information
about the homology of a map, so the computation for scalars in Q or R might
be preferable for those purposes.

5. Coboundary formula

In this section (C, ∂) will be an acyclic finitely generated chain complex with
coefficients in a field F . Let z ∈ Zm−1 be a (m − 1)-cycle. By the acyclicity
assumption, there exists a chain c ∈ Cm such that ∂c = z. In general, c is not
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unique. The purpose is to provide an explicit algorithm for finding at least one
such a chain which will be denoted by Cob(z).

Lemma 5.1. Let a ∈ Cm−1, b ∈ Cm and p:C → C be as in the elementary
reduction step of the previous section. Let z ∈ Zm−1 be a given cycle. Put
α := 〈z, a〉. Then
(a) z := pm−1z ∈ Zm−1.
(b) ∂(αλ−1b) = z − z.

Proof. (a) is obvious since p is a chain map. For (b), let

z = αa+
∑

βiai

where ai are as in the previous section. Then

z = αa+
∑

βiai = −αλ−1r +
∑

βiai.

Hence z − z = αa+ αλ−1r = αλ−1(λa+ r) = αλ−1∂b = ∂(αλ−1b). �

Note that the conlusion of Lemma 5.1 holds true even if α = 0 but in that
case z = z. We may want to avoid repetitions of (a, b)-reductions which are not
necessary for computing Cob(z). We introduce the following notation. Given
any c ∈ Cm−1 let

Em−1(c) := {a ∈ Em−1 : 〈c, a〉 6= 0}, Em(c) := {b ∈ Em : 〈∂b, c〉 6= 0}.

Lemma 5.2. Let z ∈ Zm−1, z 6= 0. Then Em−1(z) 6= ∅ and, for any a ∈
Em−1(z), Em(a) 6= ∅.

Proof. The first conlusion is obvious. For the second one, suppose the
contrary. Then 〈∂b, a〉 = 0 for all b ∈ Em hence a is orthogonal to im ∂m = Bm−1.
But C is acyclic so Bm−1 = Zm−1 thus 〈z, a〉 = 0, a contradiction. �

We shall now head towards a prototype algorithm computing Cob(z). The
idea is very simple. We start from c = 0. Then use recursively (a, b)-reductions
simultanously adding the term αλ−1b which appears in Lemma 5.1 to the previ-
ous value of c, and replacing the previous value of z by z. This procedure must
end since, each time we repeat it, the cardinality of Em−1 and Em decreases by
one and those sets are finite. When it ends, the final value of z is 0, and the final
value of c satisfies ∂c = z − 0 = z.
To formalize this dicussion let us go back to the sequence of projections

in (14). Let

C0
p1−→ C1

p2−→ C2 −→ · · ·
be the sequence of projections and let (ak, bk) ∈ (Ekm−1, Ekm) be the reduced
pairs of generators for a fixed m. Let zk be defined by

z0 := z, zk := pkzk−1, k = 1, 2, . . .
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Since each projection is a chain map, each zk is a cycle. Thus, by Lemma 5.1,

(15) zk−1 − zk = ∂(αkλ−1k bk−1)

for some λk 6= 0 and some αk (possibly equal to 0 but then zk−1 = zk). We
construct a sequence of chains ck ∈ Cm, k = 0, 1, . . . as follows.

(16) c0 := 0, ck := ck−1 + αkλ−1k bk, k = 1, 2, . . .

By induction it follows from (15) and (16) that

(17) z − zk = ∂ck.

By the same argument as in discussion following (14), there is a finite element
Cfm in the sequence beyond which the construction in this dimension cannot be
extended and then ∂fmm = 0 where ∂

k = 0 is the restriction of ∂ to Ck.

Theorem 5.3. ∂cfm = z.

Proof. Most of the proof is already done in the construction of ck. Since
C is acyclic, by the proof of Theorem 4.6, Cfm is acyclic too. Since ∂fmm = 0, we
have ker ∂fmm−1 = im ∂

fm
m = 0 hence z

fm = 0. The conclusion follows from (17).�

In the practical computation of c := cfm we notice a subtlety in the fact
that pkq is expressed in terms of the bases E

k−1
q and Ekq and we want to find

the coordinates of c with respect to the canonical basis Em = E0m. We already
saw that in Example 3.2. The problem does not appear when it is possible to
only use exterior face collapses as in Example 3.1 since then bi = bi and always
ai = ai in (12).
In general, we need a formula for a projection pk:C → C in canonical co-

ordinates such that pk is obtained by restriction of the domain of pk to Ck−1

and its codomain to Ck. This can be formalized by considering the sequence of
inclusions

C0
i1←↩ C1 i

2

←↩ C2 ←↩ · · ·
We define the inclusion j:C → Ck by induction as

(18) j0 := idC , jk := jk−1ik, k = 1, 2, . . .

Thus pk:C → C is given by

(19) pk := jk−1pkpk−1.

Similarly, ∂k, the restriction of ∂ to Ck, is expressed by a matrix in local basis
Ekm × Ekm−1 and the relation between these two maps is

(20) ∂k = pk∂jk.

The data structure which is easiest to describe but probably not the most
economic, is the following:
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Chains are vectors. We assume that the bases Eq ere linearly ordered so
they are arrays of vectors. By 〈z, a〉 we shall denote the incidence number with
respect to the local basis Em−1. Maps are defined on elements of a basis so
they can be written as matrices. Note that the only elements of the sequence
({Cq}, {∂q}) appearing in the calculations are Cm−1, Cm and ∂m. Thus we will
assume that E = (Em−1, Em), ∂ = ∂m, p = (pm−1, pm) and so on.

The algorithm calls certain algebraic procedures which we shall not describe
in detail: their meaning will be transparent from the terminology.

Algorithm 5.4 (Compute a coboundary c of a cycle z).

input

E: pair of arrays;

∂: matrix;

z: vector;

output c: vector;

function Cob(z): vector;

variables

E: pair of arrays;

i, j, p: pairs of matrices;

a, b, c: vectors;

α, λ: scalars;

begin

c := 0;

E := E;

p := idC ;

i := idC ;

j = idC ;

while z 6= 0 do
(a, b, λ) := Reduction Triple for E;

α := 〈z, a〉;
c := c+ αλ−1jb;

(p, i) := Equivalence Pair for (a, b;E);

E := p(E);

z := pm−1z;

j := ji;

end while;

return c;

end;

By the construction which lead to Theorem 5.3 we get the following
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Theorem 5.5. Algorithm 5.4 ends after running through the while loop at
most dm−1 times. The returned output c satisfies

∂c = z.

Proof. The loop while is never entered if z = 0. In this case the algorithm
returns the initial value c = 0 and, obviously, ∂0 = 0. If the loop is entered,
the sequences of projections are created exactly as in the construction leading
to Theorem 5.3. We proved that the final values are zfm = 0 and c = cfm so the
algorithm stops here. �

Remark 5.6. If z is a small cycle in a big complex, it would be useless to do
reductions of pairs (a, b) such that a is not a face of z. For such computations,
the procedure of finding Reduction Triple for E can replaced by the following:

Find Em−1(z);
a := last entry of Em−1(z);
Find Em(a);
b := last entry of Em(a);

λ : 〈∂b, a〉;

Lemma 5.2 guarantees that the lists Em−1(z) and Em(a) are nonempty so
the procedure is successful.

Remark 5.7. When R is a rectangle in Rn, i.e. a product of intervals with
integer coordinates and C := C(R) is a cubical complex of X, a fast geometric
algorithm of finding a coboundary of an (m − 1)-cycle z is given in [2]. The
algorithm is based on the recurrence with respect to the dimension d of R. Here
is the main idea of the recurrence step. Let R′ be a (d − 1)-dimensional face
of X. The orthogonal projection of R onto R′ induces, in an evident way, a
projection p:C(R) → C(R′) which is orthognal with respect to the canonical
basis of C(R) consisting of unitary cubes. We let z′ := pz and compute Cob(z′).
Then Cob(z) is obtained by adding to Cob(z′) all m-dimensional unitary cubes
through which z is projected, with approprietly chosen coeffcients. It is visible
that this construction may be viewed as a major shortcut of what we presented
in our paper. Instead of projecting in small steps through one elementary cube
per time, we get the whole cyclinder enclosed between a face e ∈ Em−1(z)
and a corresponding face of z′, in a single operation of replacing an endpoint
by an interval in the expression of e as a product of intervals. Due to this
simplification, the complexity of the algorithm in [2] is linear with respect to the
number of elements of Em−1(z). Cubical complexes are very particular but we
belive that those type of shortcuts in our universal algorithm will be possible in
many situations when a subdivision of a space to cells is chosen in a “custom-fit”
way.
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Let us introduce some more definitions. A generator a ∈ Em−1 is a free face
if there exists a unique b ∈ Em such that 〈∂b, a〉 6= 0. If so, the projection p of
the pair (a, b) is called an elementary collapse. We say that C collapses to zero
if there exists a sequence (14) of elementary collapses bringing it to zero.

Remark 5.8. As we previously noticed, the coboundary formula becomes
much more simple if C collapses to 0. Indeed, in that case, the numbers γi
in (9) are 0 so every new basis is a selection from a previous one. Thus it
shoud be possible to avoid most of matrix algebra computation and efficiently
organize data structure in the form of a tree as in [13]. The problem is that
not every acyclic complex collapses: Geometric Topology provides examples of
spaces such as the House with Two Rooms [3] which are acyclic but have no
free faces. Fortunately, such examples are very unusual. Any convex polyhedron
collapses. The author is convinced that every star-shape polyhedron, as arises
in 1, collapses too but we haven’t seen the proof yet.

Remark 5.9. We assumed field coefficients because the reduction procedure
in the previous section assumes the invertibility of λ. However, the construction
generalizes to ring coefficients as in [18]. The problem is the higher complexity
in that case. However, unlike in the previous section, it is assumed here that C
is acyclic, so no torsions would appear. Therefore it should be possible to extend
the construction for any ring without adding new costly operations.
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