Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple positive symmetric solutions of a singularly perturbed elliptic equation
  • Strona domowa
  • /
  • Multiple positive symmetric solutions of a singularly perturbed elliptic equation
  1. Strona domowa /
  2. Archiwum /
  3. Vol 18, No 1 (September 2001) /
  4. Articles

Multiple positive symmetric solutions of a singularly perturbed elliptic equation

Autor

  • Mónica Clapp
  • Gustavo Izquierdo

Słowa kluczowe

Singularly perturbed elliptic problems, symmetric solutions, nonlinear PDE's

Abstrakt

This paper is concerned with the multiplicity of positive solutions of the Dirichlet problem $$ -\varepsilon ^{2}\Delta u+u=K( x) \vert u\vert ^{p-2}u \quad\text{in }\Omega, $$ where $\Omega $ is a smooth domain in $\mathbb{R}^{N}$ which is either bounded or has bounded complement (including the case $\Omega =\mathbb{R}^{N}$), $N\geq 3$, $K$ is continuous and $p$ is subcritical. It is known that critical points of $K$ give rise to multibump solutions of this type of problems. It is also known that, in general, the presence of symmetries has the effect of producing many additional solutions. So, we consider domains $\Omega $ which are invariant under the action of a group $G$ of orthogonal transformations of $\mathbb{R}^{N}$, we assume that $K$ is $G$-invariant, and study the combined effect of symmetries and the nonautonomous term $K$ on the number of positive solutions of this problem. We obtain multiplicity results which extend previous results of Benci and Cerami (1994), Cingolani and Lazzo (1997) and Qiao and Wang (1999).

Pobrania

  • FULL TEXT (English)

Opublikowane

2001-09-01

Jak cytować

1.
CLAPP, Mónica & IZQUIERDO, Gustavo. Multiple positive symmetric solutions of a singularly perturbed elliptic equation. Topological Methods in Nonlinear Analysis [online]. 1 wrzesień 2001, T. 18, nr 1, s. 17–39. [udostępniono 5.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 18, No 1 (September 2001)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa