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MULTIPLE POSITIVE SYMMETRIC SOLUTIONS
OF A SINGULARLY PERTURBED ELLIPTIC EQUATION

Mónica Clapp — Gustavo Izquierdo

Abstract. This paper is concerned with the multiplicity of positive solu-
tions of the Dirichlet problem

−ε2∆u + u = K(x)|u|p−2u in Ω,

where Ω is a smooth domain in RN which is either bounded or has bounded

complement (including the case Ω = RN ), N ≥ 3, K is continuous and p
is subcritical. It is known that critical points of K give rise to multibump

solutions of this type of problems. It is also known that, in general, the pres-

ence of symmetries has the effect of producing many additional solutions.
So, we consider domains Ω which are invariant under the action of a group

G of orthogonal transformations of RN , we assume that K is G-invariant,
and study the combined effect of symmetries and the nonautonomous term

K on the number of positive solutions of this problem. We obtain multi-

plicity results which extend previous results of Benci and Cerami (1994),
Cingolani and Lazzo (1997) and Qiao and Wang (1999).
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1. Introduction and statement of results

We consider the singularly perturbed problem

(Pε,K)


−ε2∆u + u = K(x) | u |p−2 u in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth domain in RN which is either bounded or has a bounded
complement (Ω might be all of RN ), N ≥ 3, 2 < p < 2∗ := 2N/(N − 2), and K

is a Hölder continuous function on Ω which satisfies

inf
Ω

K > 0 and lim
|x|→∞

K(x) = K∞ < ∞.

Singularly perturbed elliptic equations have attracted much attention in re-
cent years and various interesting existence and multiplicity results have been
obtained, see for example [19] and the references therein.

Here we are interested in studying the effect of the topology of certain subsets
of the domain related to this problem on the number of solutions of it. In
the autonomous case K ≡ 1 Benci and Cerami have shown that, for bounded
domains, there is an influence of the domain topology on the number of single-
bump solutions of this problem for ε small enough ([4], [5]). Results of this
kind for more general domains are also known, see for example [6], [7]. In the
nonautonomous case ground state solutions concentrate at maxima of K as ε → 0
([25], [28], [29]), and this set of maxima has an effect on the number of single-
bump solutions of this problem ([8], [9], [24]). Similar results for the Neumann
problem are also known ([1], [24], [30]).

It has been shown that critical points of K give rise to multibump solutions
for this type of problems, see for example [17], [19], [13]. On the other hand, it is
well known that the presence of symmetries has usually the effect of producing
additional solutions. Here we shall study the combined effect of both of these
factors. We consider domains Ω which are invariant under the action of a group
G of orthogonal transformations of RN (i.e. gx ∈ Ω for all g ∈ G, x ∈ Ω). We
assume that the function K is G-invariant (i.e. K(gx) = K(x) for all g ∈ G,
x ∈ Ω) and look for solutions u which are also G-invariant, that is, we consider
the problem

(PG
ε,K)


−ε2∆u + u = K(x) | u |p−2 u in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

u(gx) = u(x) for all g ∈ G, x ∈ Ω,

where G is a closed subgroup of O(N), Ω is a G-invariant smooth domain in RN

which is either bounded or has a bounded complement, N ≥ 3, 2 < p < 2∗ and



Singularly Perturbed Elliptic Equation 19

K is a G-invariant Hölder continuous function on Ω which satisfies

inf
Ω

K > 0 and lim
|x|→∞

K(x) = K∞ < ∞.

We shall show that the G-invariant ground-state solutions of this problem tend
to concentrate near G-orbits of the set

M = M(G) =
{

y ∈ Ω
∣∣∣∣ #Gy

K(y)2/(p−2)
= min

x∈Ω

#Gx

K(x)2/(p−2)

}
and that the orbit space of M has an effect on the number of solutions of this
problem for ε small enough. More precisely, for ρ > 0, let

M−
ρ = M(G)−ρ = {y ∈ M | dist(y, ∂Ω) ≥ ρ},

M+
ρ = M(G)+ρ = {y ∈ RN | dist(y, M) ≤ ρ}.

We denote by X/G = {Gx | x ∈ X} the G-orbit space of X. Its elements are
the G-orbits Gx := {gx | g ∈ G} of X and it has the quotient space topology.
We write #Gx for the cardinality of Gx. Let µ1,RN be the energy of the ground
state solution of the problem

(P∞)

{
−∆u + u =| u |p−2 u in RN,

u(x) → 0 as |x| → ∞.

We shall prove the following results.

Theorem 1.1. Assume that Ω is bounded and that it contains a finite G-
orbit. Then, for every ρ > 0 and every γ1 < (minx∈Ω #Gx/(K(x)2/(p−2))µ1,RN

< γ2, there exists an ε > 0 such that, for every 0 < ε < ε, problem (PG
ε,K) has

at least

catM+
ρ /G(M−

ρ /G)

solutions u which satisfy

2p

p− 2
γ1 < ε−N

∫
Ω

(ε2|∇u|2 + |u|2) dx <
2p

p− 2
γ2.

Theorem 1.2. Assume Ω has bounded (possibly empty) complement and
that it contains a finite G-orbit. Assume further that

(CG) minx ∈ Ω
#Gx

K(x)2/(p−2)
< minx ∈ Ω

#Gx

K
2/(p−2)
∞

.

Then, for every ρ > 0 and every γ1 < (minx ∈ Ω#Gx/K(x)2/(p−2))µ1,RN < γ2

there exists an ε > 0 such that, for every 0 < ε < ε, problem (PG
ε,K) has at least

catM+
ρ /G(M−

ρ /G)
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solutions u which satisfy

2p

p− 2
γ1 < ε−N

∫
Ω

(ε2|∇u|2 + |u|2) dx <
2p

p− 2
γ2.

Here catZ(Y ) denotes the Lusternik–Schnirelmann category of Y in Z, that
is, the smallest number of open subsets of Z which are contractible in Z and
cover Y .

If G is the trivial group Theorem 1.1 is due to Benci and Cerami [5] for
K ≡ 1, and to Qiang and Wang [24] for arbitrary K. For Ω = RN with no
group action, Theorem 1.2 is due to Cingolani and Lazzo [8], [9]. The technics
used there, however, cannot be adapted to our case. In all of these papers
the result is obtained by showing that, for ε small enough, the “barycenter” of
low energy functions lies near enough Ω or, respectively, near enough the set
of minima of the potential. But the “barycenter map” on symmetric functions
is trivial, so it is of no use to obtain symmetric results. On the other hand,
as in the non-symmetric case, there is a concentration behavior of G-invariant
ground-state solutions as ε → 0. Our results are based on a careful study of this
concentration phenomenon. We show that, as ε → 0, low energy G-invariant
functions concentrate near G-orbits of M in an adequate way, that is, low energy
G-invariant functions tend to look as a sum of highly concentrated ground state
solutions of the limiting problem (P∞) centered at each point of a G-orbit of M

(see Theorem 4.3 below). Moreover, we show that, for ε small enough, there is
a unique such sum which minimizes the distance to a low energy function (see
Proposition 5.5 below). This way we produce a “baryorbit map” which will yield
the above results.

We would like to point out that, if the action of G is not free, the points
of M are not necessarily local maxima of K. Notice also that, if Ω and K are G-
invariant, Theorems 1.1 and 1.2 provide in fact additional (multibump) solutions
to those obtained in [5], [8], [24], namely, the following holds.

Corollary 1.3. Assume that Ω is a bounded G-invariant domain, K is
strictly positive and G-invariant, and that there is a finite sequence of subgroups
{id} = G0 ⊂ . . . ⊂ Gm = G of G such that

min
x∈Ω

#Gix

K(x)2/(p−2)
< min

x∈Ω

#Gi+1x

K(x)2/(p−2)
< ∞

for i = 0, . . . , m − 1. Then, given ρ > 0, there exists an ε > 0 such that, for
every 0 < ε < ε, problem (Pε,K) has at least

catM(Gi)
+
ρ /Gi

(M(Gi)−ρ /Gi)
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solutions which are Gi-invariant but not Gi+1-invariant. In particular, (Pε,K)
has at least

m∑
i=0

catM(Gi)
+
ρ /Gi

(M(Gi)−ρ /Gi)

solutions.

Corollary 1.4. Assume that Ω has bounded (possibly empty) complement
and that

inf
Ω

K > 0 and lim
|x|→∞

K(x) = K∞ < max
x∈Ω

K(x).

Assume further that Ω and K are G-invariant, and there is a finite sequence of
subgroups {id} = G0 ⊂ . . . ⊂ Gm = G of G such that

min
x∈Ω

#Gix

K(x)2/(p−2)
< min

x∈Ω

#Gi+1x

K(x)2/(p−2)
< ∞

for i = 0, . . . , m − 1. Then, given ρ > 0, there exists an ε > 0 such that, for
every 0 < ε < ε, problem (Pε,K) has at least

catM(Gi)
+
ρ /Gi

(M(Gi)−ρ /Gi)

solutiona which are Gi-invariant but not Gi+1-invariant. In particular, (Pε,K)
has at least

m∑
i=0

catM(Gi)
+
ρ /Gi

(M(Gi)−ρ /Gi)

solutions.

This paper is organized as follows: in Section 2 we describe the variational
setting for problem (PG

ε,K) and in Section 3 we derive some useful properties of
the ground state of this problem. In Section 3 we make a careful analysis of the
concentration behavior of G-invariant “Palais–Smale sequences” of the energy
as ε → 0. Finally, Section 4 is devoted to the proof of the above results.

2. The variational setting

We shall use the following notation:

〈u, v〉ε :=
∫

Ω

(ε∇u · ε∇v + uv) dx,

‖u‖ε :=
( ∫

Ω

(ε2|∇u|2 + |u|2) dx

)1/2

,

|u|p,K :=
( ∫

Ω

K(x)|u|p dx

)1/p

.

The action of G on Ω induces a G-action on H1
0 (Ω) given by

(gu)(x) := u(g−1x) for g ∈ G, u ∈ H1
0 (Ω), x ∈ Ω.
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This is an orthogonal action on H1
0 (Ω) for any of the scalar products 〈 · , · 〉ε,

ε > 0, and it preserves the norm | · |p,K , that is,

〈gu, gv〉ε = 〈u, v〉ε and |gu|p,K = |u|p,K

for all u, v ∈ H1
0 (Ω), g ∈ G. Therefore, the functional Eε,K : H1

0 (Ω) → R,

Eε,K(u) =
1
2

∫
Ω

(ε2|∇u|2 + |u|2) dx− 1
p

∫
Ω

K(x)|u|p dx =
1
2
‖u‖2

ε −
1
p
|u|pp,K

is G-invariant and, by the Principle of Symmetric Criticality [23], the positive
critical points of its restriction

EG
ε,K : H1

0 (Ω)G → R

to the fixed point space H1
0 (Ω)G = {u ∈ H1

0 (Ω) | gu = u for all g ∈ G} are
precisely the solutions of (PG

ε,K).
The non-trivial critical points of EG

ε,K lie on the Nehari manifold

NG
ε,K = {u ∈ H1

0 (Ω)G \ {0} | DEε,K(u)u = 0}
= {u ∈ H1

0 (Ω)G | ‖u‖2
ε = |u|pp,K , u 6= 0},

which is a C1,1-manifold, radially dipheomorphic to each of the unit spheres

ΣG
ε = {u ∈ H1

0 (Ω)G | ‖u‖ε = 1}, ΣG
p,K = {u ∈ H1

0 (Ω)G | |u|p,K = 1}.

The diffeomorphisms are given by

(2.1) ΣG
ε → NG

ε,K , u 7→ |u|p/(2−p)
p,K u, ΣG

p,K → NG
ε,K , u 7→ ‖u‖2/(p−2)

ε u.

For u ∈ NG
ε,K the functional EG

ε,K is simply

EG
ε,K(u) =

p− 2
2p

‖u‖2
ε =

p− 2
2p

|u|pp,K ,

and the positive critical points of this functional on NG
ε,K are precisely the non-

trivial G-invariant solutions of (PG
ε,K), (see [5], [31]).

Let

µG
ε,K := inf{EG

ε,K(u) | u ∈ NG
ε,K} > 0.

Then, following Benci and Cerami [4] (cf. [10]), one can easily show that

Proposition 2.1. If u ∈ NG
ε,K is a critical point of EG

ε,K such that EG
ε,K(u)

< 2µG
ε,K then either u > 0 or u < 0 in Ω. Hence |u| is a solution of (PG

ε,K).
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3. Properties of µG
ε,K

From the diffeomorphisms (2.1) defined above it follows that

µG
ε,K =

p− 2
2p

inf
u∈ΣG

ε

|u|2p/(2−p)
p,K =

p− 2
2p

inf
u∈ΣG

p,K

‖u‖2p/(p−2)
ε .

With this remark the following properties are easily verified.

Proposition 3.1.

(a) If K is a constant function then

µG
ε,K = K2/(2−p)µG

ε,1.

(b) If 0 < K1 ≤ K2 then µG
ε,K1

≥ µG
ε,K2

. In particular, if Ω0 is a G-invariant
subdomain of Ω and K0 := K | Ω0 is the restriction of K to Ω0, then
µG

ε,K0
≥ µG

ε,K .

(c) If 0 < ε1 ≤ ε2 then µG
ε1,K ≤ µG

ε2,K .

(d) If Γ is a closed subgroup of G, then µΓ
ε,K ≤ µG

ε,K .

If K ≡ 1 on Ω we write µG
ε,Ω for µG

ε,1, and if G = {Id} is the trivial group we
denote µG

ε,K simply by µε,K . Let B(x, ρ) the open ball of radius ρ centered at x

in RN . It is easy to see that

ε−Nµε,B(0,ρ) = µ1,B(0,ε−1ρ) and ε−Nµε,RN = µ1,RN .

Using the exponential decay of the ground state solution of the limiting problem
in RN Benci and Cerami have shown [4] that

(3.1) lim
ε→0

ε−Nµε,B(0,ρ) = lim
r→∞

µ1,B(0,r) = µ1,RN .

Let #Gx be the cardinality of the G-orbit Gx = {gx | g ∈ G} of x.

Proposition 3.2. The following inequalities hold:

(a) (supx∈Ω K(x))2/(2−p)µ1,RN ≤ ε−NµG
ε,K ,

(b) lim supε→0 ε−NµG
ε,K ≤ (infx∈Ω #Gx/K(x)2/(p−2))µ1,RN .

Proof. (a) Let K ≡ supx∈Ω K(x). By Proposition 3.1,

K
2/(2−p)

µ1,RN = K
2/(2−p)

ε−Nµε,RN ≤ K
2/(2−p)

ε−Nµε,Ω

= ε−Nµε,K ≤ ε−NµG
ε,K

≤ ε−NµG
ε,K .

(b) If all orbits Gx are infinite there is nothing to prove. So let x ∈ Ω be
such that #Gx < ∞. For every ρ > 0 small enough so that B(x, ρ) ⊂ Ω and
B(gx, ρ) ∩B(x, ρ) = ∅ if gx 6= x, let

Uρ :=
⋃
g∈G

B(gx, ρ).
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Let Kρ := K | Uρ be the restriction of K to Uρ, and let Kρ := infy∈B(x,ρ) K(y).
Then, by Proposition 3.1,

ε−NµG
ε,K ≤ ε−NµG

ε,Kρ
≤ ε−NµG

ε,Kρ
=

1
(Kρ)2/(p−2)

ε−NµG
ε,Uρ

=
#Gx

(Kρ)2/(p−2)
ε−Nµε,B(0,ρ)

and, by (3.1) above,

lim sup
ε→0

ε−NµG
ε,K ≤ #Gx

(Kρ)2/(p−2)
µ1,RN .

Letting ρ → 0 we get

lim sup
ε→0

ε−NµG
ε,K ≤ #Gx

K(x)2/(p−2)
µ1,RN

for all x ∈ Ω and, by [10, Lemma 8], also for all x ∈ Ω. �

In particular, if K attains its maximum at some fixed point of the action
of G on Ω, then

lim
ε→0

ε−NµG
ε,K = (max

x∈Ω
K(x))2/(2−p)µ1,RN .

We shall show that in fact, under an appropriate compactness condition (Con-
dition 4.2 below),

lim
ε→0

ε−NµG
ε,K =

(
min
x∈Ω

#Gx

K(x)2/(p−2)

)
µ1,RN .

4. G-invariant minimizing sequences

Let 0 < µG
K := lim infε→0 ε−NµG

ε,K ≤ ∞.

Definition 4.1. A G-PS-sequence for EG
∗,K is sequence (εn, un) such that

(i) εn > 0, εn → 0,
(ii) ε−N

n EG
εn,K(un) → γ ∈ R,

(iii) ε
−N/2
n ‖∇EG

εn,K(un)‖εn
→ 0.

If γ = µG
K < ∞ then (εn, un) will be called a minimizing G-PS-sequence for

EG
∗,K .

∇EG
εn,K denotes the gradient of EG

εn,K in the Hilbert space (H1
0 (Ω), 〈 · , · 〉ε).

We wish to describe minimizing G-PS-sequences. We shall need the following
compactness condition.
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Condition 4.2. There exists a β > 0 such that the set{
y ∈ Ω

∣∣∣∣ #Gy

K(y)2/(p−2)
≤

(
inf
x∈Ω

#Gx

K(x)2/(p−2)

)
+ β

}
is compact.

Observe that Condition 4.2 always holds if Ω is bounded. If Ω has bounded
complement Condition 4.2 is equivalent to

(CG) min
x∈Ω

#Gx

K(x)2/(p−2)
< min

x∈Ω

#Gx

K
2/(p−2)
∞

,

which is the one given in Theorem 1.2.
Without loss of generality we assume that K is defined on all of RN .
Let ω = ±|ω| denote either the positive or the negative ground state solution

of the limiting problem

(P∞)

{
−∆u + u = |u|p−2u in RN ,

u(x) → 0 as |x| → ∞,

which is radially symmetric with respect to the origin.
There is a strong analogy between the behaviour of G-PS-sequences for EG

∗,K
and those occuring in problems where invariance under dilations or under tran-
lations produces a lack of compactness [20], [26], [3], [27]. The following theorem
gives a precise description of minimizing G-PS-sequences for EG

∗,K .
We write Gx := {g ∈ G | gx = x} for the G-isotropy subgroup of x.

Theorem 4.3. Assume that Condition 4.2 holds. Then, for every minimiz-
ing G-PS-sequence (εn, un) for EG

∗,K , there exist a subsequence, also denoted by
(εn, un), a closed subgroup Γ of finite index in G, and a sequence (yn) in Ω such
that

(a) Gyn
= Γ,

(b) yn → y ∈ Ω with Gy = Γ and

#Gy

K(y)2/(p−2)
= min

x∈Ω

#Gx

K(x)2/(p−2)
,

(c) ε
−N/2
n ‖un −

∑
[g]∈G/Γ K(y)1/2−pω(ε−1

n ( · − gyn)‖εn
→ 0,

(d) µG
K = limε→0 ε−NµG

ε,K = (minx∈Ω #Gx/K(x)2/(p−2))µ1,RN .

Proof. Let ũn ∈ H1(RN ) and K̃n : RN → R be

ũn(z) := un(εnz), K̃n(z) := K(εnz).
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Then,

ε−N
n ‖un‖2

εn
= ‖ũn‖2 :=

∫
(|∇ũn|2 + ũ2

n),

ε−N
n |un|pp,K = ‖ũn‖p, eKn

:=
∫

K̃n|ũn|p.

In the usual way [27], [31] one can show that the sequence ε−N
n ‖un‖2

εn
= ‖ũn‖2

is bounded and, therefore, that

|ũn|pp, eKn
= ε−N

n |un|pp,K → 2p

p− 2
γ > 0.

We apply the Concentration–Compactness Principle [20]. By Lemma 1.21 in [31]
vanishing does not occur. Therefore, there exists an 0 < α ≤ 1 and a subse-
quence (ũn) such that, for every δ > 0, there exist R > 0, a sequence (zn) in RN

and a sequence Rn →∞ satisfying, for all n large enough.

(4.1)

∣∣∣∣ 2p

p− 2
γα−

∫
B(zn,R)

K̃n‖ũn‖p

∣∣∣∣ < δ,∣∣∣∣ 2p

p− 2
γ(1− α)−

∫
RN\B(zn,Rn)

K̃n|ũn|p
∣∣∣∣ < δ.

We denote now RN = V . For a subgroup H of G, we denote by

V H = {z ∈ V | gz = z for all g ∈ H}

the H-fixed point set of V and by zH the orthogonal projection of z ∈ V onto V H .
We need the following.

Lemma 4.4. If for some closed subgroup H of G

(4.2) dist(zn, V H) →∞,

then there exists a proper closed subgroup K of H such that |H/K| < ∞ and a
subsequence, denoted again by (zn), such that

(a) HzK
n

= K and
(b) for every r > 0 there is an n(r) ∈ N such that

B(gzn, r) ∩B(g′zn, r) = ∅ for all [g] 6= [g′] ∈ H/K and n ≥ n(r).

Proof. Let z⊥n be the orthogonal projection of zn onto the orthogonal com-
plement (V H)⊥ of V H in V . Then, up to a subsequence, z⊥n 6= 0 and

z′n =
z⊥n
|z⊥n |

→ z′ ∈ (V H)⊥.



Singularly Perturbed Elliptic Equation 27

Since H acts on (V H)⊥ without non-trivial fixed points, the isotropy subgroup
K = Hz′ is a proper subgroup of H. For every set of classes [g1], . . . , [gm] ∈ H/K

there is a ρ > 0 such that

B(giz
′, ρ) ∩B(gjz

′, ρ) = ∅ for i 6= j.

So, since |z⊥n | = dist(zn, V H) →∞,

B(giz
⊥
n , r) ∩B(gjz

⊥
n , r) = ∅ for i 6= j and n large,

and therefore

B(gizn, r) ∩B(gjzn, r) = ∅ for i 6= j and n large.

Since ũn is G-invariant,

m

∫
B(zn,r)

K̃n|ũn|p ≤
∫

K̃n|ũn|p =
2p

p− 2
γ + o(1).

Hence, |H/K| < ∞. Finally, since (z′n)K → (z′)K = z′, the isotropy subgroup
H(z⊥n )K = H(z′n)K ⊂ K = Hz′ . and therefore HzK

n
= K. �

We go on with the proof of Theorem 4.3. Starting with H = G we apply
Lemma 4.4 inductively as many times as (4.2) is satisfied (maybe none) until we
arrive at a closed subgroup Γ of finite index in G and a subsequence (zn) such
that

dist(zn, V Γ) < C < ∞,(4.3)

GzΓ
n

= Γ,

B(gzn, r) ∩B(g′zn, r) = ∅ for all [g] 6= [g′] ∈ G/Γ, n ≥ n(r).

(Observe that, if (4.2) does not hold for H = G, then Γ := G satisfies these three
conditions). Let ζn := zΓ

n be the orthogonal projection of zn onto V Γ and let

un = ũn( · + ζn), Kn = K̃n( · + ζn).

Since ‖un‖ = ‖ũn‖ is bounded, a subsequence

un ⇀ u weakly in H1(RN ),

un → u a.e. on RN ,

un → u in Lp
loc(R

N ).

It follows from (4.1) and (4.3) that, for r ≥ R and n large enough,

2p

p− 2
γα− δ ≤

∫
B(zn,R)

K̃n|ũn|p ≤
∫

B(ζn,C+r)

K̃n|ũn|p

≤
∫

B(zn,2C+r)

K̃n|ũn|p ≤
∫

B(zn,Rn)

K̃n|ũn|p ≤
2p

p− 2
γα + 2δ.
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Since un → u in Lp
loc(RN ),∫

B(ζn,C+r)

K̃n|ũn|p =
∫

B(0,C+r)

Kn|un|p → lim
n→∞

K(εnζn)
∫

B(0,C+r)

|u|p

as n →∞. Letting first n →∞ and then r →∞ we obtain

2p

p− 2
γα− δ ≤ lim

n→∞
K(εnζn)

∫
|u|p ≤ 2p

p− 2
γα + 2δ

for all δ > 0 and, therefore,

(4.4) lim
n→∞

K(εnζn)
∫
|u|p =

2p

p− 2
γα.

In particular, u 6= 0. Furthermore, since ũn is G-invariant, it follows from (4.3)
that

|G/Γ|
∫

B(0,C+r)

Kn|un|p ≤ |G/Γ|
∫

B(zn,2C+r)

K̃n|ũn|p

≤
∫

K̃n|ũn|p =
2p

p− 2
γ + o(1)

for n large enough. So letting first n →∞ and then r →∞ we obtain

(4.5) α ≤ |G/Γ|−1.

Moreover, for δ < 2p/(p− 2)γα and all n large enough,

0 <

∫
B(ζn,C+R)

K̃n|ũn|p = ε−N
n

∫
B(εnζn,εn(C+R))

K|un|p.

Hence dist(εnζn,Ω) < εn(C + R). Let

yn := εnζn, K̂ := lim
n→∞

K(yn).

Then Gyn
= Γ. If

lim inf
n→∞

ε−1
n dist(yn, ∂Ω) < ∞

we may assume that
lim

n→∞
ε−1

n dist(yn, ∂Ω) = d.

It is then easy to verify that, up to a rotation, the sets Ωn := {z ∈ RN | εnz+yn ∈
Ω} satisfy

∞⋂
k=1

( ∞⋃
n=k

Ωn

)
= HN ,

where HN = {(z1, . . . , zN ) ∈ RN : zN > −d}. Hence, u is a solution of the
limiting problem {

−∆u + u = K̂|u|p−2u in HN ,

u ∈ H1
0 (HN ),
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in the half-space HN and, by [16], u must be zero. This is a contradiction.
Therefore,

lim
n→∞

ε−1
n dist(yn, ∂Ω) = ∞

and u is a solution of the limiting problem

(P∞, bK)

{
−∆u + u = K̂|u|p−2u in RN ,

u(x) → 0 as |x| → ∞.

If γ = µG
K , Proposition 3.3 and Equations (4.4) and (4.5) above imply

#Gyn

K̂2/(p−2)
µ1,RN ≤ |G/Γ|p− 2

2p
K̂

∫
|u|p ≤ µG

K ≤
(

min
x∈Ω

#Gx

K(x)2/(p−2)

)
µ1,RN .

Condition 4.2 implies that (yn) is bounded. Therefore a subsequence yn → y ∈ Ω,
and the inequalities above imply Gy = Γ, K(y) = K̂,

(4.6)
|G/Γ|

K̂2/(p−2)
=

#Gy

K(y)2/(p−2)
= min

x∈Ω

#Gx

K(x)2/(p−2)
,

u is a ground state solution of (P∞, bK), that is

(4.7) u = K(y)1/2−pω,

and

(4.8) µG
K =

(
min
x∈Ω

#Gx

K(x)2/(p−2)

)
µ1,RN .

We now prove (c). Since ε−1
n |gyn − yn| → ∞ if g /∈ Γ, it follows that u( · +

ε−1
n (gyn − yn)) ⇀ 0 weakly in H1(RN ). Therefore, for every subset S of G/Γ

which does not contain the identity class,

ε−N
n

∥∥∥∥un −
∑
[g]∈S

u(ε−1
n ( · − gyn))

∥∥∥∥2

εn

=
∥∥∥∥un −

∑
[g]∈S

u( · + ε−1
n (gyn − yn))

∥∥∥∥2

=
∥∥∥∥un − u−

∑
[g]∈S

u( · + ε−1
n (gyn − yn))

∥∥∥∥2

+ ‖u‖2 + o(1)

= ε−N
n

∥∥∥∥un − u(ε−1
n ( · − yn))−

∑
[g]∈S

u(ε−1
n ( · − gyn))

∥∥∥∥2

en

+
2p

p− 2
K̂2/(2−p)µ1,RN + o(1).
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Choose [g0] ∈ S and let S′ = S \ {[g0]}. Then, since ‖ · ‖ε is G-invariant and u

is radially symmetric,∥∥∥∥un −
∑
[g]∈S

u(ε−1
n ( · − gyn))

∥∥∥∥2

εn

=
∥∥∥∥g0un − u(ε−1

n ( · − g0yn))−
∑

[g]∈S′

u(ε−1
n ( · − g0gyn))

∥∥∥∥2

εn

.

Since un is G-invariant, we may proceed inductively to obtain

ε−N
n ‖un‖2

εn
= ε−N

n

∥∥∥∥un −
∑

[g]∈G/Γ

u(ε−1
n ( · − gyn))

∥∥∥∥2

εn

+ |G/Γ| 2p

p− 2
K̂2/(2−p)µ1,RN + o(1),

and (c) follows from and equations (4.6)–(4.8). �

An immediate consequence is the following.

Corollary 4.5. Assume Condition 4.2 holds. Then µG
K = ∞ if and only if

every G-orbit of Ω is infinite.

For the critical exponent problem a result similar to Theorem 4.3 was proved
in [10], however without the condition that the isotropy subgroups of the yn’s
coincide with the one of its limit point y. This fact shall be rather useful for
proving Theorems 1.1 and 1.2.

5. Proof of Theorems 1 and 2

The Nehari-manifold NG
ε,K is symmetric with respect to the origin and the

functional EG
ε,K : NG

ε,K → R is even. So critical points appear in pairs {u,−u}.
According to Proposition 2.1, the number of critical pairs with

EG
ε,K(u)=EG

ε,K(−u)< 2µG
ε,K

is a lower bound for the number solutions of (PG
ε,K).

It is well known that, if the functional EG
ε,K : NG

ε,K → R satisfies the Palais–
Smale condition in the interval [µG

ε,K , ν], that is, if

(PS) Every sequence (un) ∈ NG
ε,K such that

EG
ε,K(un) → c ∈ [µG

ε,K , ν] and ‖∇EG
ε,K(un)‖ε → 0

has a convergent subsequence,

then the number of critical antipodal pairs of EG
ε,K : NG

ε,K → R with values ≤ ν

is at least
{Z/2}-cat(EG

ε,K)≤ν ,
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where (EG
ε,K)≤ν := {u ∈ NG

ε,K : EG
ε,K(u) ≤ ν} and {Z/2}-cat(X) denotes the

equivariant {Z/2}-category of X that is, the smallest number of open subsets
which cover X each of which can be deformed into a pair {x,−x} in X through
a an odd deformation (see for example [2], [12]).

If Y is a subspace of Z we denote by catZ(Y ) the Lusternik–Schnirelmann
category of Y in Z [22], [18], that is, the smallest number of open subsets of Z,
each of them contractible in Z, which cover Y , and we write cat(Z) := catZ(Z).

We shall need the following easy lemma:

Lemma 5.1. Let X be a fixed point free Z/2-space and assume there is a
space Z, a subspace Y ⊂ Z and maps

Y
ι−→ X

β−→ Z

such that β(x) = β(−x) for every x ∈ X, and β ◦ ι(y) = y for all y ∈ Y . Then,

catZ(Y ) ≤ {Z/2}-cat(X).

Proof. Since Z/2 acts freely on X, {Z/2}-cat(X) = cat(X̂) where X̂ is the
quotient space of X obtained by identifying each x with −x. Then β induces a
map β̂ : X̂ → Z. If ι̂ : Y → X̂ denotes the composition of ι with the quotient
map X → X̂, then β̂ ◦ ι̂(y) = y for all y ∈ Y and the result follows from
[11, 1.3(3)]. �

Let

M :=
{

y ∈ Ω
∣∣∣∣ #Gy

K(y)2/(p−2)
= min

x∈Ω

(
#Gx

K(x)2/(p−2)

)}
and, for ρ > 0, let

M−
ρ := {y ∈ M | dist(y, ∂Ω) ≥ ρ},

M+
ρ := {y ∈ RN | dist(y, M) ≤ ρ}.

We shall show that, given ρ > 0 and γ2 > µG
K , there exist ε > 0 and µG

K < γ <

min{γ2, 2µG
K} with the following property: For every 0 < ε < ε, the inequalities

µG
ε,K ≤ εNγ < 2µG

ε,K hold, and there exist two continuous functions

M−
ρ

ιρ,ε−−−→ (EG
ε,K)≤εN γ βρ,ε−−−→ M+

ρ /G

such that ιρ,ε is G-invariant, βρ,ε(u) = βρ,ε(−u) and βρ,ε(ιρ,ε(y)) = Gy.
Lemma 5.1 then yields Theorems 1.1 and 1.2 provided the Palais–Smale con-
dition holds.

We shall assume throughout that Ω contains a finite G-orbit and that Con-
dition 4.2 is satisfied. This implies, in particular, that M is compact and that
every G-orbit in M is finite. Now, isotropy subgroups satisfy that Ggx = gGxg−1,
therefore the set of isotropy subgroups of a G-space consists of complete conju-
gacy classes [14]. Let {(Γ1), . . . , (Γm)} be the set of conjugacy classes of those
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subgroups of G which occur as isotropy subgroups in M . Fix a subgroup Γi in
each conjugacy class (Γi) and let

Mi := {y ∈ M | Gy = Γi}.

Then M = GM1 ∪ . . . ∪GMm where GMi := {gy | g ∈ G, y ∈ Mi} and, since

|G/Γi|
K(y)2/(p−2)

= min
x∈Ω

#Gx

K(x)2/(p−2)

for each y ∈ GMi, K is constant on GMi. We denote by Ki the value of K on
GMi.

It follows easily from the definition of M that each Mi is compact. So we
may fix a ρ > 0 such that

|y − gy| > 2ρ if gy 6= y ∈ M,(5.1)

dist(GMi, GMj) > 2ρ if i 6= j.

Proposition 5.3. Given ρ > 0 and µG
K < γ < 2µG

K there exists ε1 =
ε1(ρ, γ) > 0 such that, for every 0 < ε < ε1,

(a) εNγ < 2µG
ε,K and

(b) there exits a G-invariant map ιρ,ε : M−
ρ → (EG

ε,K)≤εN γ .

Proof. Let ωε−1ρ be the positive ground state solution of the problem{
−∆u + u = |u|p−2u in B(0, ε−1ρ),

u = 0 on ∂B(0, ε−1ρ),

that is, ‖ωε−1ρ‖2 = |ωε−1ρ|pp and p− 2/2p‖ωε−1ρ‖2 = µ1,B(0,ε−1ρ). For ρ ≤ ρ, let
ιρ,ε : M−

ρ → NG
ε,K be given by

ιρ,ε(y) :=
∑

[g]∈G/Gy

( |ωε−1ρ(ε−1( · − gy))|pp,K

‖ωε−1ρ(ε−1( · − gy))‖2
ε

)1/2−p

ωε−1ρ(ε−1( · − gy)) ∈ NG
ε,K .

Then, using (5.2), we obtain

ε−NEε,K(ιρ,ε(y))

=
∑

[g]∈G/Gy

( |ωε−1ρ(ε−1( · − gy))|pp,K

‖ωε−1ρ(ε−1( · − gy))‖2
ε

)2/(2−p)
p− 2
2p

ε−N‖ωε−1ρ(ε−1( · − gy))‖2
ε

=
∑

[g]∈G/Gy

(∫
K(ε( · ) + gy)|ωε−1ρ|p

‖ωε−1ρ‖2

)2/(2−p)
p− 2
2p

‖ωε−1ρ‖2

=
|G/Gy|

K(y)2/(p−2)
µ1,RN + oε(1) = µG

K + oε(1),
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where oε(1) → 0 uniformily in M . Since ε−NµG
ε,K → µG

K as ε → 0 there exists
ε1 > 0, depending on ρ, such that for all 0 < ε < ε1 and all y ∈ M−

ρ ,

ε−NEε,K(ιρ,ε(y)) < γ < 2ε−NµG
ε,K .

Finally, if ρ ≥ ρ, we define ιρ,ε = ιρ,ε. �

The outgoing map βρ,ε requires some more work. For each ρ ≤ ρ we consider
the ρ-neighbourhood

Mρ
i := {x ∈ Vi | dist(x,Mi) ≤ ρ}

of Mi in the Γi-fixed point space Vi := {x ∈ RN : gx = x for all g ∈ Γi}. Notice
that GMρ

1 ∪ . . .∪GMρ
m ⊂ M+

ρ and that Gy = Γi for every y ∈ Mρ
i if ρ ≤ ρ. Let

θε,y :=
∑

[g]∈G/Γi

K
1/2−p
i ω(ε−1( · − gy))

and, for ε > 0, ρ ≤ ρ, and δ > 0, consider the sets

Θε,ρ := {θε,y | y ∈ Mρ
1 ∪ . . . ∪Mρ

m},
Θδ

ε,ρ := {v ∈ H1
0 (Ω)G | ε−N/2‖v − θε,y‖ε < δ for some θe,y ∈ Θε,ρ}.

Then,

Proposition 5.4. Given δ > 0 and ρ > 0 there exist an ε2 = ε2(δ, ρ) > 0
and a γ = γ(δ, ρ) > µG

K such that, for every 0 < ε < ε2,

(EG
ε,K)≤εN γ ⊂ Θδ

ε,ρ.

Proof. If this were not so, then for some δ > 0 and some ρ > 0 there would
exist a sequence of positive numbers εn → 0 and a sequence (un) in NG

ε,K such
that ε−N

n Eεn,K(un) ≤ µG
K + 1/n and un /∈ Θδ

εn,ρ. As in Ekeland’s Variational
Principle [15] we may assume that (εn, un) is a minimizing PS-sequence. This
contradicts Theorem 4.3. �

We wish to show that

Proposition 5.5. Given 0 < ρ < ρ there exist a γ = γ(ρ) > µG
K and an

ε3 = ε3(ρ) > 0 with the property that, for every 0 < ε < ε3 and every u ∈
(EG

ε,K)≤εN γ , there is exactly one G-orbit Gyε,u, such that yε,u ∈ Mρ
1 ∪ . . . ∪Mρ

m

and

(5.2) ε−N/2‖u− θε,yε,u
‖ε = min

θ∈Θε,ρ

ε−N/2‖u− θ‖ε.

We need the following lemma.
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Lemma 5.6.

(a) ε−N‖θε,y‖2
ε = (2p/(p− 2))µG

K + oε(1) where oε(1) → 0 uniformly in
Mρ

1 ∪ . . . ∪Mρ
m.

(b) Given r > 0 there is an ε4 = ε4(r) > 0 such that, if 0 < ε < ε4 and
y, y′ ∈ Mρ

1 ∪ . . . ∪Mρ
m satisfy

ε−N‖θε,y − θε,y′‖2
ε <

2p

p− 2
µG

K ,

then dist(Gy, Gy′) < r.

Proof. Since |ω| and |∇ω| decay exponentially as |z| → ∞,

|〈ω, ω( · + z)〉| ≤ Me−a|z|

where M and a are positive constants independent of z. Therefore, for y ∈ Mρ
i ,

ε−N‖θε,y‖2
ε = ‖

∑
[g]∈G/Γi

K
1/2−p
i ω( · − ε−1gy)‖2

= |G/Γi|K2/(2−p)
i ‖ω‖2 + 2

∑
[g] 6=[g′]

K
2/2−p
i 〈ω, ω( · − ε−1(gy − g′y))〉

=
2p

p− 2
µG

K + oε(1)

with |oε(1)| ≤ M ′e−2aε−1ρ. This proves the first assertion.
Now, if y ∈ Mρ

i , y′ ∈ Mρ
j and ε−N‖θε,y − θε,y′‖2

ε < 2p/(p− 2)µG
K , then

2p

p− 2
µG

K + oe(1) ≤ ε−N (‖θε,y‖2
ε + ‖θε,y′‖2

ε)−
2p

p− 2
µG

K

< 2ε−N 〈θε,y, θε,y′〉ε
= 2

∑
[g]∈G/Γi

∑
[g′]∈G/Γj

(KiKj)1/2−p〈ω, ω( · − ε−1(gy − g′y′))〉

≤ M ′′e−aε−1dist(Gy,Gy′)

This implies that dist(Gy, Gy′) ≤ Cε and (b) follows. �

Proof of Proposition 5.5. Choose

(5.3) 0 < δ < min
{√

p

p− 2
µG

K ,
1
2

∥∥∥∥ ∂ω

∂z1

∥∥∥∥2(
N max

i,j,k
K

1/2−p
i

∥∥∥∥ ∂2ω

∂zj∂zk

∥∥∥∥)−1}
and let ε2 = ε2(δ, ρ/3) > 0 and a γ′ = γ(δ, ρ/3) > µG

K be as in Proposition 5.4.
Let ε4 = ε4(ρ/3) be as in Lemma 5.6. Then, for every 0 < ε < min{ε2, ε4} and
u ∈ (EG

ε,K)≤εN γ′ there is a y ∈ M
ρ/3
i such that ε−N/2‖u − θε,y‖ε < δ. Thus, if

y ∈ Mρ
j satisfies (5.2), then

(5.4) ε−N/2‖u− θε,y‖ε = min
θ∈Θε,ρ

ε−N/2‖u− θ‖ε < δ
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and, therefore,

ε−N‖θε,y − θε,y‖2
ε <

2p

p− 2
µG

K .

By Lemma 5.6, dist(Gy, Gy) < ρ/3. Hence, (5.1) implies that y ∈ M
2ρ/3
i . So

our problem reduces to showing that any two minima of the function

fε,u(y) = ε−N‖u− θε,y‖2
ε = ‖ũ− θ̃ε,y‖2

defined on Mρ
i lie on the same G-orbit. Here we write ṽ(z) := v(εz). The

function fε,u is twice differentiable and, for every y ∈ Mρ
i and h ∈ Vi,

D2fε,u(y)(h, h) = 2ε−2

[∥∥∥∥ ∑
[g]∈G/Γi

K
1/2−p
i Dω( · − ε−1gy)gh

∥∥∥∥2

−
〈

ũ− θ̃ε,y,
∑

[g]∈G/Γi

K
1/2−p
i D2ω( · − ε−1gy)(gh, gh)

〉]
By (5.2), |y− gy| ≥ 2(ρ− ρ) if gy 6= y, y ∈ Mρ

i , so following the argument in the
proof of Lemma 5.6 we obtain∥∥∥∥ ∑

[g]∈G/Γi

K
1/2−p
i Dω( · − ε−1gy)gh

∥∥∥∥2

= |h|2
(

|G/Γi|
K

2/(p−2)
i

∥∥∥∥ ∂ω

∂z1

∥∥∥∥2

+ oe(1)
)

where oε(1) → 0 as ε → 0 independently of y ∈ Mρ
i . If y is a minimum of fε,u it

follows from (5.2) and (5.3) that there exist 0 < ε′3 ≤ min{ε2, ε4} and positive
constant C independent of u, ε, y and h such that, if 0 < ε < ε′3, then

D2fε,u(y)(h, h) ≥ 2
|G/Γi|

K
2/(p−2)
i

ε−2|h|2(∥∥∥∥ ∂ω

∂z1

∥∥∥∥2

+ oe(1)−NK
1/2−p
i max

j,k

∥∥∥∥ ∂2ω

∂zj∂zk

∥∥∥∥‖ũ− θ̃ε,y‖
)
≥ Cε−2|h|2.

It follows that there is an R > 0, independent of 0 < ε < ε′3 and u ∈ (EG
ε,K)≤εN γ′ ,

such that any two minima y1 6= y2 of fε,u in Mρ
i satisfy

(5.5) |y1 − y2| ≥ εR.

We now argue by contradiction: Assume there are sequences γn → µG
K , εn → 0

and un ∈ (EG
εn,K)≤εN

n γn such that fεn,un
has at least two minima yn,1, yn,2 in Mρ

i

with Gyn,1 6= Gyn,2. Then Theorem 4.3 asserts that ε−N
n ‖un − θεn,yn,i

‖2
εn
→ 0

for i = 1, 2 and therefore

K
2/(2−p)
i

∥∥∥∥ ∑
[g]∈G/Γi

(ω( · − ε−1
n gyn,1)− ω( · − ε−1

n gyn,2))
∥∥∥∥2

= ε−N
n ‖θεn,yn,1

− θεn,yn,2
‖2

εn
→ 0
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as n →∞. But (5.5) says that dist(Gε−1
n yn,1, Gε−1

n yn,2) ≥ R for all n sufficiently
large. This is a contradiction. �

Corollary 5.7. Given 0 < ρ < ρ and γ2 > µG
K there exist a µG

K < γ <

min{2µG
K , γ2} and an ε̃ > 0 with the property that, for every 0 < ε < ε̃,

(a) εNγ < 2µG
ε,K ,

(b) there exist two continuous functions

ιρ,ε : M−
ρ → (EG

ε,K)≤εN γ and βρ,ε : (EG
ε,K)≤εN γ → M+

ρ /G

such that ιρ,ε is G-invariant, βρ,ε(u) = βρ,ε(−u) and βρ,ε(ιρ,ε(y)) = Gy.

Proof. Let γ(ρ) > µG
K and ε3 = ε3(ρ) > 0 be as in Proposition 5.5, let

γ := min{2µG
K , γ2, γ(ρ)}, let ε1 = ε1(ρ, γ) > 0 be as in Proposition 5.3 and let

ε̃ := min{ε1, ε2}. Then, for every 0 < ε < ε̃, (a) holds. We take ιρ,ε : M−
ρ →

(EG
ε,K)≤εN γ as in Proposition 5.3 and define

βρ,ε : (EG
ε,K)≤εN γ → M+

ρ /G, βρ,ε(u) := Gyε,u,

with yε,u as in Proposition 5.5. It is easy to check that ιρ,ε and βρ,ε has the
desired properties. �

Proof of Theorems 1.1 and 1.2. We may assume that ρ < ρ. Let
µG

K < γ < min{2µG
K , γ2} and ε̃ > 0 be as in Corollary 5.7 above. According

to the discussion at the beginning of this section, Lemma 5.1 and Corollary 5.7
imply that, if 0 < ε < ε̃, then EG

ε,K : NG
ε,K → R has at least

catM+
ρ /G(M−

ρ /G)

critical points u with EG
ε,K(u) < 2µG

ε,K and such that

2p

p− 2
ε−NµG

ε,K ≤ ε−N

∫
Ω

(ε2|∇u|2 + |u|2) =
2p

p− 2
ε−NEG

ε,K(u) <
2p

p− 2
γ2

provided it satisfies the Palais–Smale condition (PS) in [µG
ε,K , εNγ]. Moreover,

Theorem 4.3(d) says there is an 0 < ε < ε̃ such that ε−NµG
ε,K > γ1 for all

0 < ε < ε. So in order to complete the proof of Theorems 1.1 and 1.2 all we need
to show is that EG

ε,K satisfies (PS) in [µG
ε,K , εNγ]. This is true and well known

if Ω is bounded, so Theorem 1.1 follows immediately.
If Ω has bounded complement then Condition 4.2 is equivalent to

min
x∈Ω

#Gx

K(x)2/(p−2)
< min

x∈Ω

#Gx

K
2/(p−2)
∞

.

We choose γ so that it also satisfies

γ < µG
∞ :=

(
min
x∈Ω

#Gx

K
2/(p−2)
∞

)
µ1,RN .
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Let (un) ∈ NG
ε,K be a Palais–Smale sequence for EG

ε,K such that EG
ε,K(un) → c ∈

[µG
ε,K , εNγ]. Let ũn(z) := un(εz) and K̃(z) := K(εz). Then (ũn) is a G-invariant

Palais–Smale sequence for

EG
1, eK

(v) :=
1
2

∫
(|∇v|2 + |v|2)− 1

p

∫
K̃(z)|v|p, v ∈ H1

0 (ε−1Ω)G,

with EG
1, eK

(ũn) → ε−Nc < µG
∞, and ε−1Ω := {ε−1y | y ∈ Ω} has bounded com-

plement. By Benci and Cerami’s Compactness Lemma [3] (ũn) has a convergent
subsequence. So EG

ε,K : NG
ε,K → R satisfies the Palais–Smale condition (PS) in

[µG
ε,K , εNγ] for every 0 < ε < ε and Theorem 1.2 follows. �

The existence of a G-invariant ground state solution under the hypotheses of
Theorem 1.2 was shown in [21]. We would like to point out that our Theorem 1.2
does not include the autonomous case because Condition 4.2 does not hold for
constant K on unbounded domains. But using the “baryorbit map” βρ,ε one
should be able to obtain similar results to those of [7] for the G-equivariant case.

Proof of Corollaries 1.3 and 1.4. Assume first Ω is bounded. It follows
from Theorems 1.1 and 4.3(d) that there is an ε > 0 such that, for every 0 <

ε < ε, problem (Pε,K) has at least

catM(Gi)
+
ρ /Gi

(M(Gi)−ρ /Gi)

Gi-invariant solutions u with

Eε,K(u) =
p− 2
2p

∫
Ω

(ε2|∇u|2 + |u|2) < µ
Gi+1
ε,K .

Therefore these solutions are not Gi+1-invariant. This proves Corollary 1.3. The
proof of Corollary 1.4 is completely analogous. Just observe that, since K∞ <

maxx∈Ω K(x), Condition (CGi) in Theorem 1.2 holds for all i = 0, . . . , m. �
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