Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Total and local topological indices for maps of Hilbert and Banach manifolds
  • Strona domowa
  • /
  • Total and local topological indices for maps of Hilbert and Banach manifolds
  1. Strona domowa /
  2. Archiwum /
  3. Vol 15, No 1 (March 2000) /
  4. Articles

Total and local topological indices for maps of Hilbert and Banach manifolds

Autor

  • Yuri E. Gliklikh

Słowa kluczowe

Topological index, fixed points, infinite-dimensional manifolds, locally compact maps, condensing maps, weakly continuous maps

Abstrakt

Total and local topological indices are constructed for various types of continuous maps of infinite-dimensional manifolds and ANR's from a broad class. In particular the construction covers locally compact maps with compact sets of fixed points (e.g. maps having a certain finite iteration compact or having compact attractor or being asymptotically compact etc.); condensing maps ($k$-set contraction) with respect to Kuratowski's or Hausdorff's measure of non-compactness on Finsler manifolds; maps, continuous with respect to the topology of weak convergence, etc. The characteristic point is that all conditions are formulated in internal terms and the index is in fact internal while the construction is produced through transition to the enveloping space. Examples of applications are given.

Pobrania

  • FULL TEXT (English)

Opublikowane

2000-03-01

Jak cytować

1.
GLIKLIKH, Yuri E. Total and local topological indices for maps of Hilbert and Banach manifolds. Topological Methods in Nonlinear Analysis [online]. 1 marzec 2000, T. 15, nr 1, s. 17–31. [udostępniono 7.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 15, No 1 (March 2000)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa