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Abstract. Total and local topological indices are constructed for various

types of continuous maps of infinite-dimensional manifolds and ANR’s from
a broad class. In particular the construction covers locally compact maps

with compact sets of fixed points (e.g. maps having a certain finite itera-
tion compact or having compact attractor or being asymptotically compact

etc.); condensing maps (k-set contraction) with respect to Kuratowski’s or

Hausdorff’s measure of non-compactness on Finsler manifolds; maps, con-
tinuous with respect to the topology of weak convergence, etc.

The characteristic point is that all conditions are formulated in internal

terms and the index is in fact internal while the construction is produced
through transition to the enveloping space. Examples of applications are

given

Introduction

In this paper we put together our results on constructing the topological
index for various types of maps of infinite-dimensional manifolds, both published
in [5], [12], [6] and [7], etc., and their new developments obtained with a new
approach suggested in [15] and [16]. The topological characteristics, constructed
here, are motivated by applications and so there are a lot of problems where
they are applied. The characteristics are calculated so that existence theorems
are obtained for those problems.
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We consider a Hilbert or Banach manifoldM that can be embedded into some
Hilbert or Banach (respectively) space E as a neighbourhood retract. Sometimes
we do not use the manifold structure of M (and so the construction is valid for
Banach ANR’s) while some other cases involve the manifold structure of M .
Unlike many other approaches our construction is not based on homologies of
infinite-dimensional spaces, etc. The main idea is rather elementary and looks
as follows.

Let M be embedded into E and U be its neighbourhood such that there
exists a retraction R : U →M . Let f : M →M be a continuous map. Consider
the map F : U → U defined by the formula F = f ◦R. Let there exist a compact
set B ∈ M containing the set Fix(f) of all fixed points of f (i.e., of F ). Then
on the boundary Ω̇ of a certain neighbourhood Ω of B in U we may consider the
index (rotation) of (vector field) I − F , if it is well-posed for F , and introduce
the total index (or Lefschetz number) of f on M as the value of index (rotation)
for I − F on Ω̇. The local index can be defined quite analogous.

Then we show that the obtained index does not depend on the space E, the
method of embedding, the choice of Ω and so on and that it has usual properties.

Our approach is valid for all classes of operators on infinite-dimensional man-
ifolds and ANR’s, for which the index was constructed in the literature that we
know (see [8], [10], [9]), and for many others that were not considered previously.
Namely, it covers the following cases:

(I) M is a topological space that can be embedded as a neighbourhood
retract into a Banach space or into a normed space or into a locally
convex space. The map f is locally compact and its set Fix(f) of fixed
points is compact.

Remark 1. Particular cases are locally compact maps with at least one of
the following additional conditions:

(a) a certain finite iteration fn(M) is compact,
(b) f has a compact attractor,
(c) f is asymptotically compact, i.e., f∞(M) is compact.

(II) M is a Finsler manifold that can be isometrically embedded into a
Banach space. f is condensing (k-set contraction) with respect to Ku-
ratowski’s or Hausdorff’s measure of non-compactness defined in terms
of the internal distance on M generated by the Finsler metric.

Remark 2. Notice that in spite of the fact that the formulations in internal
terms sound reasonably, the direct internal construction of index fails since it
involves the notion of convex closure absent in nonlinear manifolds.

(III) M is as in (II), f is locally condensing with respect to Kuratowski’s and
Hausdorff measures of non-compactness and Fix(f) is compact.
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Remark 3. Recall that the latter is satisfied if at least one of additional
conditions (a), (b) or (c) from Remark 1 is fulfilled.

(IV) M is a manifold and f is continuous with respect to the topology of
weak convergence.

Remark 4. Notice that the usual weak topology is ill-posed on manifolds
as even a chart is not open in weak topology. However the topology of weak
convergence is well-posed and we use it instead of the former. Here M should
be embedded into a reflexive Banach space as a neighbourhood retract and the
embedding of M should be continuous with respect to both ordinary Banach
topology and topology of weak convergence.

The characteristic point of (II)–(IV) is that all conditions are formulated in
internal terms and the index is in fact internal while the construction is produced
through transition to the enveloping space. This must mean that probably it
is possible to find an internal construction however (as we know) this has never
been done. For (I) (to be exact, for special cases of (a), (b) and (c)) the internal
construction in homological terms is known (see [8], [10] and [9]).

Our first paper [5] in this subject was originated by investigation of a certain
integral-type operator [11], defined in terms of Riemannian parallel translation
on the Banach manifold of C1-curves on a compact Riemannian manifold M. It
is locally compact and its second iteration is compact. At that moment we knew
only Browder’s paper [8] (notice that [10] and [9] had not been published yet)
where the Lefschetz number was constructed for compact maps of Banach ANRs.
Since our operator was not the case, it was a demand for our construction. The
study of shift operator along the solutions of functional-differential equations on
manifolds made us generalise the construction onto condensing operators [12]. It
should be pointed out that in the above cases the total index is proved to be equal
to the Euler characteristic χM of M that allowed us to establish the existence
of a periodic solution if χM 6= 0. Recently new applications are obtained for
differential equations of Carathéodory type on the Hilbert manifold of Sobolev
diffeomorphisms of M, connected with the modern Lagrangian approach by
Arnold, Ebin and Marsden to hydrodynamics [15], [16]. We cannot mention all
the applications here and refer the reader to the bibliography in [6], [7], [13],
[14], [15] and [16]. We present only one example of applications in Section 2.

The structure of paper is as follows. In Section 1 we describe the main
construction with some details on the example of locally compact maps with
compact sets of fixed points. As compared with previous publications, we deal
with this general problem from the very beginning considering (a), (b) and (c)
from Remark 1 above as particular cases.
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Section 2 is devoted to condensing and locally condensing maps. Here we
modify and use the new approach suggested in [15] and [16] for studying differ-
ential equaitons on Hilbert manifolds. This approach allows us to obtain deeper
results than before. We illustrate the construction by considering the shift oper-
ator for a fucntional-differential equation on a compact manifold M. The shift
operator acts on the Banach manifold of continuous curves on M. We show that
its total index is well-posed and is equal to the Euler characteristic of M.

In Section 3 we present additional points necessary to extend the construction
on weakly continuous maps.

1. Locally compact maps with compact sets of fixed points

Let X be a topological space that can be embedded into a Banach space as a
neighbourhood retract (usually such spaces are called BANR, Banach absolute
neighbourhood retracts). Let f : X → X be a continuous locally compact map
such that Fix(f), the set of fixed points of f , is compact. In this section we
construct the total index for f .

Various classes of maps have the above property. Among them we can men-
tion the maps whose certain iteration is compact, i.e., there exists a number n
such that fn(X) ∈ X is a compact set, a map with compact attractor or a limit
compact map (in both cases the infinite iteration f∞(X) is a compact set), etc.
It is obvious that fn(X) and f∞(X) contain Fix(f) and so the latter is compact.

Embed X into a Banach space E and denote by R : U → X a neighbourhood
and a retraction existing by our general assumption. Define the composition map
F : U → E by the formula F = f ◦R. Obviously F is locally compact since such
is f and Fix(F ) = Fix(f). Since Fix(f) is compact, there exist a finite number
of open sets Ωα in U such that the image F (Ωα) is relatively compact for each
α and Ω = ∪αΩα contains Fix(f). Thus F (Ω) is relatively compact. Note that
there are no fixed points of F on the boundary Ω̇. Hence the index (rotation)
γ(I − F, Ω̇) of (the vector field) I − F on Ω̇ is well-posed.

Definition 1. The index γ(I−F, Ω̇) is called the total index or the Lefschetz
number of f on X and is denoted by Λf .

Notice that in particular cases, mentioned above, we needn’t know Fix(f)
from the very beginning since Fix(f) (if it is not empty) belongs to another
compact set: fn(X) or f∞(X) or to the compact attractor, see above. We
should consider a neighbourhood Ω of that compact set.

Evidently Λf takes the same values for all possible Ω by the usual properties
of index.

Lemma 2. Λf is independent of the choice of U and R.
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Proof. Suppose that there are two neighbourhoods U1 and U2 with retrac-
tions R1 and R2, respectively. For U = U1 ∩ U2 define F1 = f ◦ R1 : U → X

and F2 = f ◦ R2 : U → X. Let Ω ⊂ U be a neighbourhood of Fix(f) such
that both F1(Ω) and F2(Ω) are compact. Since Fix(f) is compact, for a certain
ε > 0, small enough, the ε-neighbourhood Ωε of Fix(f) belongs to Ω and (since
in addition the continuous map F1 − F2 is equal to zero on Fix(f) ⊂ X) there
exists δ > 0 such that for any u from the δ-neighbourhood Ωδ of Fix(f) we get
‖F1(u)−F2(u)‖ < ε, i.e., a straight segment γ, joining F1(u) and F2(u), belongs
to Ωε. Retracting γ on X, we get the path that joins F(u) and F2(u). It is easy
to see that we obtain a homotopy that is compact on Ωδ× [0, 1] and has no fixed
points on the boundary Ω̇δ. Thus γ(I − F1, Ω̇δ) = γ(I − F2, Ω̇δ). �

Lemma 3. Λf is independent of the choice of E and embedding.

Proof. Let E1 and E2 be Banach spaces with embeddings i1 : X → E1,
i2 : X → E2 and retractions R1 : U1 → i1X, R2 : U2 → i2X of the corresponding
neighbourhoods. Introduce F1 = f ◦ R1 and F2 = f ◦ R2 as above. Consider
the Banach space E = E1 ×E2 with the norm equal to the sum of norms of the
factors. Then i = (i1, i2) : X → E is an embedding and R = (R1, R2) : U → iX

is a retraction of U = U1 × U2 onto iX. Introduce F = f ◦R. Denote by Ω, Ω1

and Ω2 the neighbourhoods of Fix(f) in E, E1 and E2, respectively, that define
Λf = γ(I − F, Ω̇), Λ1

f = γ(I − F1, Ω̇1) and Λ2
f = γ(I − F2, Ω̇2) for Ω = Ω1 × Ω2.

Using Krasnosel’skĭı’s product of rotations theorem (see [17], p. 134) one can
easily get that Λ1

f = Λf and Λ2
f = Λf . See details, e.g., in [5], [6], [7]. �

Our total index Λf has usual properties that we formulate in the following

Theorem 4.

(1) If f has only isolated fixed points in X then Λf is the sum of their
indices.

(2) If f1 and f2 from the class of locally compact maps with compact sets of
fixed points are homotopic to each other in the same class, then Λf1 =
Λf2 .

(3) If Λf 6= 0, there exists a fixed point of f in X.
(4) If X is contractible, then f is homotopic to a constant map so that

Λf = 1 and there exists a fixed point of f in X.

The proof of theorem is routine. It is based on the analogous properties for
completely continuous operators. For example, if Λf = γ(I − F, Ω̇) 6= 0, there
exists a fixed point x∗ of F in Ω. By the construction x∗ ∈ X and f(x∗) = x∗.

Assume in addition that X is a Banach manifold. Let the image f(X) belong
to a closed submanifold Y in X. This means that f can be restricted to f|Y :
Y → Y and the construction of Λ is valid for f|Y .
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Theorem 5. Λf = Λf|Y .

To prove Theorem 5 one should consider a tubular neighbourhood UY of Y
in X with retraction RY and then show that F = f ◦ R and FY = f ◦ RY ◦ R
are homotopic as maps of R−1(UY ) ⊂ U .

The above construction is generalised to introduce the local index. Let X
be as above and f : W → X sends the closure of open set W into X without
fixed points on the boundary Ẇ . Let f be continuous, locally compact and
have compact Fix(f) (as well as above the last condition is satisfied if, e.g., a
finite iteration fk(W ) is compact or f∞(W ) is compact or f on W has compact
attractor). Here we should consider F = f ◦R on a certain neighbourhood Ω of
Fix(f) in W such that f(Ω) is compact. We introduce the local index γ(f, Ω̇) by
the equality γ(f, Ẇ ) = γ(I−F, Ω̇). All properties of γ(f, Ẇ ) are similar to those
of ordinary local index (and analogous to those of Λf ). In particular, γ(f, Ẇ ) is
constant under homotopies in the above class of maps without fixed points on
Ẇ and if γ(f, Ẇ ) 6= 0 there exists a fixed point of f in W .

2. The case of condensing maps

Let M be a smooth infinite-dimensional Finsler manifold. This means that
there is a structure of smooth Banach manifold on M , that in any tangent space
TmM at a point m ∈M the norm ‖·‖m, equivalent to that of the model space of
M , is given and that the norm ‖ · ‖m smoothly depends on m ∈M . The family
of the norms ‖ · ‖m, m ∈M , is called the Finsler metric on M .

We shall follow the usual notations and omit the index m since it is obvious
at what point a certain vector is applied. For instance, let m(t) be a smooth
curve on M . Then evidently the velocity vector ṁ = dm(t)/dt is applied at
m(t).

The length of a smooth curve m(t) in M for t ∈ [a, b] is determined by the
formula

∫ b

a
‖ṁ(t)‖ dt.

Recall the standard notion of Finsler geometry:

Definition 6. For m0,m1 ∈ M (X0, X1 ∈ TM) the number equal to the
infimum of the lengths of curves connecting them, is called the intrinsic distance
d(m0,m1) between them in M .

It is a well-known fact that d(m0,m1) satisfies the axioms of a metric and so
M becomes a metric space.

Everywhere below we suppose that M is isometrically embedded in a certain
Banach space E with the norm ‖ · ‖E . This means that for any X ∈ TmM ,
m ∈ M , the equality ‖X‖ = ‖X‖E holds. That is why we shall omit E in the
notations for norm in the space.
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Proposition 7. For any m0,m1 ∈M the inequality

d(m0,m1) ≥ ‖m0 −m1‖

holds.

The proof of Proposition 7 is routine.
We also shall suppose that there exist a neighbourhood U of M in E and a

smooth retraction R : U → M . Denote by TR the tangent map to R. Recall
that TR sends a vector X ∈ TxE (tangent to E at x ∈ E) into the vector
dxR(X) ∈ TR(x)M where dxR denotes the (linear operator of) derivative of R
at x.

Proposition 8. For any point m ∈ M ⊂ U and for any Q > 1 there
exists a neighbourhood V Q

m of m in U such that for any x ∈ V Q
m the inequality

Q > ‖dxR‖ > 1/Q holds where ‖dmR‖ is the norm of operator dmR.

Proof. Since R is smooth and for any m ∈ M ⊂ U by definition R(m) =
m, at m ∈ M the equality ‖dmR‖ = 1 holds and consequently in a certain
neighbourhood V Q

m of m in U we get Q > ‖dxR‖ > 1/Q as ‖dxR‖ is continuous
in x ∈ U . �

Specify an arbitrary point m ∈ M and a number Q > 1. Since V Q
m is open,

there exists a ball B ⊂ V Q
m of some radius ρ with the centre at m.

Theorem 9. The retraction R on B is Lipschitz continuous with respect to
the norm ‖ · ‖ of E in B and the intrinsic metric d on M with the Lipschitz
constant Q

Proof. Consider two points u0 and u1 in B and denote by u(s), s0 ≤ s ≤ s1,
the line interval connecting u0 and u1. Since B is convex, the complete interval
u(s) belongs to B and thus the map R is well-posed at its points. Consider the
curve m(s) = R(u(s)) in M connecting m0 = R(u0) ∈M with m1 = R(u1) ∈M .
Let s be the natural parameter (the length) on u(s) (if it is not so, change the
parameter). Thus ‖u̇(s)‖ = 1 for s ∈ [s0, s1] where u̇ = du/ds. Evidently the

length
∫ s1

s0 ‖u̇(s)‖ ds of u(s) from u0 to u1 is equal to the distance ‖u0 − u1‖
between those points in E and is equal to |s1− s0| since ‖u̇(s)‖ = 1. The length

of m(s), s0 ≤ s ≤ s1, between m0 and m1 is equal to
∫ s1

s0 ‖ṁ(s)‖ ds and is not
shorter than the intrinsic distance d(m0,m1) between m0 and m1.

Notice in addition that by definition ṁ(s) = TRu̇(s). Then applying Propo-
sition 8 and the above arguments we get the following estimates:

d(m0,m1) ≤
∫ s1

s0
‖ṁ(s)‖ ds =

∫ s1

s0
‖du(s)Ru̇(s)‖ ds ≤

∫ s1

s0
‖du(s)R‖‖u̇(s)‖ ds

≤
∫ s1

s0
Q‖u̇(s)‖ ds = Q

∫ s1

s0
ds = Q(s1 − s2) = Q‖u0 − u1‖. �
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Corollary 10. R is Lipschitz continuous on B with constant Q with respect
to the norm ‖ · ‖ in both B and M

Indeed, by Proposition 7, d(m0,m1) is not shorter than the distance ‖m0 −
m1‖ between those points in E, and the last formula in the proof of Theorem 9
leads to ‖m0 −m1‖ < Q‖u0 − u1‖.

Recall (see details in [1], [20]) the notions of Hausdorff and Kuratowski mea-
sures of non-compactness in a Banach space. Let Ω ⊂ E be a bounded subset
in E.

Definition 11. χ(Ω) = inf{ε > 0 | Ω has in E a finite ε-net with respect
to the norm ‖ · ‖} is called the Hausdorff measure of non-compactness of Ω.

Definition 12. α(Ω) = inf{d > 0 | Ω permits its partition in E into a finite
number of subsets with diameters less than d with respect to the norm ‖ · ‖} is
called the Kuratowski measure of non-compactness of Ω.

In what follows in this section by measure of non-compactnes ψ we denote
either χ or α.

Notice some properties of χ and α such as:

(i) its invariance with respect to convex closure: ψ(co Ω) = ψ(Ω) for any
bounded set Ω,

(ii) (monotonicity) if Ω0 ⊆ Ω1 then ψ(Ω0) ≤ ψ(Ω1),
(iii) (non-singularity) ψ({h} ∪ Ω) = ψ(Ω) for any bounded Ω ⊂ E and any

point h ∈ E.

Both χ and α can be defined in any metric space, in particular, in M with
the distance d taken as metric. Namely, denote by χI(Ω) the internal Hausdorff
measure of non-compactness of a bounded set in M defined by the formula
χI(Ω) = inf{ε > 0 | Ω has in M a finite ε-net with respect to the distance
d}. Similarly, the internal Kuratowski measure of non-compactness is αI(Ω) =
inf{d > 0 | Ω permits its partition in M into a finite number of subsets with
diameters less than d with respect to the distance d}.

An important difference between ψ and ψI is that property (i) is not valid
for the latter at least because there is no analogue of convex closure in nonlinear
spaces. Properties (ii) and (iii) remain true for ψI .

Proposition 13. In any metric space ψ(Ω) = 0 if and only if Ω is compact.

Proposition 13 follows from well-known facts of the theory of metric spaces.

Definition 14. A continuous map F : E → E (f : M → M) is called con-
densing with respect to the measure of non-compactness ψ (ψI , respectively)
with constant q if for any bounded set Ω the inequality ψ(F (Ω)) < qψ(Ω)
(ψI(f(Ω)) < qψI(Ω), respectively) holds.
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Recall that property (i) is essentially involved into the construction of index
for condensing maps in Banach linear spaces so that the direct analogue of clas-
sical scheme for introducing index for condensing maps with respect to ψI on M
fails. However it is possible to construct the index by the general scheme of this
paper.

Let f : M →M be condensing with respect to ψI with q < 1 and let M has
finite diameter. Consider the set f∞(M) =

⋂∞
k=1 f

k(M).

Lemma 15. f∞ is compact.

Proof. Assume it is not so. Let ψI(f∞(M)) = a > 0. Choose k such that
qkψI(M) < a. Then ψI(fk(M)) < ψI(f∞(M)) that contradicts the inclusion
f∞(M) ⊂ fk(M). �

Notice that f∞(M) contains all fixed points of f .
Introduce F : U →M ∈ U by the formula F = f ◦R as above.

Theorem 16. There exists a neighbourhood V ⊃ M in U such that F is
locally condensing on V with respect to ψ with a certain constant q < 1.

Proof. Specify Q > 1 such that qQ < 1. Determine V as the union of balls
B mentioned in Theorem 9 with the above Q. Specify a point x ∈ V belonging
to a certain B. By Theorem 9 R is Lipschitz continuous on the neighbourhood
B of x with constant Q with respect to the norm ‖ · ‖ in B and the intrinsic
distance d in M . Let a set A ⊂ B has a finite ε-net Nε for some ε > 0 with
respect to the norm ‖ · ‖. Then the set R(Nε) ⊂ M is a finite (at least) Qε-
net of R(A) with respect to d. This means that χI(R(A)) ≤ Qχ(A). Since
χI(f(R(A))) < qχI(R(A)), we get χI(f(R(A))) < Qq2χ(A). From Proposition 7
it follows that χ(f(R(A))) < χI(f(R(A))). Thus χ(F (A)) < Qqχ(A). Define
q = qQ. Notice that q < 1 by the choice of Q. �

As well as in Section 1 there exists a neighbourhood Ω of the compact set
f∞(M) (containing all fixed points of f and so of F , see above) in V such that
F : Ω → U is condensing with respect to ψ with constant q < 1. By the
construction there are no fixed points of F on the boundary Ω̇. Thus the index
γ(I − F, Ω̇) is well-posed (see [1], [20]).

Definition 17. γ(I−F, Ω̇) is called the total index or the Lefschetz number
of f on M and is denoted by Λf .

As well as the total index in Section 1, this Λf has the usual properties that
we summarise in the following

Theorem 18.

(1) If f has only isolated fixed points in X then Λf is the sum of their
indices.
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(2) If f1 and f2 from the class of condensing maps with q < 1 are homotopic
to each other in the same class, then Λf1 = Λf2 .

(3) If Λf 6= 0, there exists a fixed point of f in X.
(4) If X is contractible, then f is homotopic to a constant map so that

Λf = 1 and there exists a fixed point of f in X.
(5) Let the image f(M) belong to a closed submanifold M0 in M . Then

Λf = Λf|M0
.

(6) If f is as in Section 1, then the total indices of f constructed in Section 1
and here coincide.

The construction of local index γ(f, Ẇ ) is a simple modification of that from
Section 1.

Notice that the constructions of Λf and of γ(f, Ẇ ) can be applied directly
for a map f that is locally condensing with some constant q < 1 and such that
its set Fix(f) (in M or in W , respectively) is compact. In particular, for a
locally condensing map with constant q < 1 whose certain finite iteration or f∞

is compact (of M or of W , respectively), or that has a compact attractor (in M
or in W , respectively). The properties of total and local indices are the same as
above.

Now we present an example of applications. It is influenced by a construction
of M. I. Kamenskĭı for equations of neutral type in linear spaces.

Let M be a compact Riemannian manifold with a Riemannian metric 〈 · , · 〉
and let J = [−τ, 0], τ > 0, be an interval of R. Consider the smooth Banach
manifold C0(J,M) of continuous curves (mappings) in M defined on J . Denote
by π : TM→M the natural projection of tangent bundle to M.

Definition 19. A functional-differential equation (FDE) is a map X : R×
C0(J,M) → TM such that π(X(t, ϕ)) = ϕ(0) for any ϕ ∈ C0(J,M).

For a continuous curve x : [−τ, a] →M, a > 0, denote by xt : [−τ, 0] →M,
t ∈ [0, a], the curve from C0(J,M) defined by the formula xt(θ) = x(t + θ),
θ ∈ [−τ, 0]. Let ϕ(t) ∈ C0(J,M).

Definition 20. A C1-curve xϕ(t), t ∈ [−τ, a], a > 0, such that for t ∈ [−τ, 0]
xϕ(t) = ϕ(t), is called a solution of FDE X with initial condition ϕ if for any
t ∈ [0, a] the equality dxϕ(t)/dt = X(t, xϕ

t ) holds.

We shall suppose that for any ϕ(θ) there exists a unique solution xϕ(t) of
FDE X and that this solution is continuous in initial value ϕ. It is known, that
this assumption is fulfilled, e.g., if X is locally Lipschitz continuous (for example,
smooth). We also shall suppose that ‖X(t, ϕ)‖M is uniformly bounded for all
t ∈ R, ϕ ∈ C0(J,M) where ‖ · ‖M is the norm in tangent space generated by
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the Riemannian metric on M. Under this assumption all solutions exist for t up
to ∞.

Let X be periodical with period ω > 0, i.e., X(t, ϕ) = X(t+ω, ϕ) for any ϕ.

Definition 21. The operator uω : C0(J,M) → C0(J,M) sending a curve
ϕ into the curve xϕ

ω is called the shift operator along solutions of FDE X.

From the above assumptions it follows that uω is continuous and that its
fixed points correspond to ω-periodic solutions of the FDE X.

The tangent space TϕC
0(J,M) to C0(J,M) at ϕ ∈ C0(J,M) is the set of all

continuous vector fields {X(θ)} along ϕ(θ) (i.e., X(θ) ∈ Tϕ(θ)M for each θ ∈ J).
Consider the following Finsler metric on C0(J,M) generated by the Riemannian
metric 〈 · , · 〉 on M: ‖X( · )‖ = maxθ∈J e

θ‖X(θ)‖M for X( · ) ∈ TϕC
0(J,M),

where ‖X(θ)‖M = 〈X(θ), X(θ)〉1/2.
Immediately from the definition of the above Finsler metric we derive the

following

Lemma 22. The internal distance d on C0(J,M) of the above Finsler metric
is represented by the formula: d(ϕ0, ϕ1) = max

θ∈J
eθρ(ϕ0(θ), ϕ1(θ)) where ρ is the

internal distance on M corresponding to Riemannian metric 〈 · , · 〉.

Consider the Hausdorff measure of non-compactness χI on C0(J,M) with
respect to d (see above). Let Ω be a bounded set in C0(J,M). For a point
r ∈ J consider restrictions of curves from Ω on the intervals [−τ, r] and [r, 0].
Those restrictions form Banach manifolds where we can define Finsler metrics
and their internal distances in analogy with the above Finsler metric and d. The
corresponding Hausdorff measures of non-compactness are denoted by χ[−τ,r] and
χ[r,0], respectively. The notations χ[−τ,r](Ω) and χ[r,0](Ω) mean the application
of χ[−τ,r] and χ[r,0] to the sets of corresponding restrictions.

Lemma 23. χI(Ω) ≥ max(χ[−τ,r](Ω), χ[r,0](Ω)) for any r ∈ J .

The proof of Lemma 23 is routine.

Theorem 24. χI(uω(Ω)) < e−ωχI(Ω).

Proof. Since ‖X(t, ϕ)‖M is bounded and Ω is a bounded set in C0(J,M),
all curves from uω(Ω) are smooth with uniformly bounded derivatives for t ≥ 0,
hence they are uniformly bounded and equicontinuous, i.e., compact. This means
that if τ ≤ ω, χI(uω(Ω) = 0 and the Theorem is proved.

Let ω ≤ τ . Then χ[−ω,0](uω(Ω)) = 0 and so χI(uω(Ω)) = χ[−τ,−ω](uω(Ω)).
From the construction of uω and χI it follows that

χI(uω(Ω)) = χ[−τ,ω](uω(Ω)) = e−ωχ[ω−τ,0](Ω).
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Hence, by Lemma 23,

e−ωχI(Ω) ≥ e−ω max(χ[−τ,ω−τ ](Ω), χ[ω−τ,0](Ω)) ≥ e−ωχ[ω−τ,0](Ω) = χI(uω(Ω)).

�

Thus, in order to show that the total index for uω is well-posed we need to
embed C0(J,M) isometrically into a certain Banach space as a neighbourhood
retract.

By classical Nash’s theorem M can be isometrically embedded into some
Euclidean space RK for K large enough. There exists a tubular neighbourhood
Θ of M in RK with retraction R : Θ → M. Then C0(J,Θ) is a neighbour-
hood of C0(J,M) in C0(J,RK) such that R : C0(J,Θ) → C0(J,M) is a re-
traction. If we in addition introduce the norm in C0(J,RK) by the formula
‖ϕ( · )‖ = max

t∈J
et‖ϕ(t)‖RK , C0(J,M) turns out to be isometrically embedded

into C0(J,RK).
So, we have proved the following

Theorem 25. Λuω is well-posed.

Theorem 26. Λuω is equal to the Euler characteristic χM.

Proof. For s ∈ [0, 1] denote by ϕs ∈ C0(J,M) the curve such that

ϕs(θ) =

{
ϕ(θ) for θ ∈ [−sτ, 0],

ϕ(−sτ) for θ ∈ [−τ,−sτ ].

Consider the FDE Xs defined for ϕ ∈ C0(J,M) by the formula Xs(ϕ) = X(ϕs).
Denote by xs,ϕ the solution of Xs with initial condition ϕ and by usω the shift
operator sending ϕ into xs,ϕ

sω . The homotopy usω obviously satisfy the condi-
tions of Theorem 18(2). In addition usω for s = 1 coincides with uω and u0

sends C0(J,M) into the submanifold of constant curves that is isomorphic to
M (denote it also by M) where it coincides with the shift operator along the
solutions of ordinary differential equation X0. By Theorem 18(5) we can restrict
u0 on M. But on M the operator is homotopic to identical map and so its total
index is equal to χM. �

Corollary 27. If χM 6= 0, FDE X has an ω-periodic solution.

3. Weakly continuous maps

Weakly continuous maps form another class of infinite-dimensional operators,
for which the index is well-posed. The starting points of this theory in linear
Banach spaces can be seen in [2] and [3], for further references see, e.g., the
bibliography in [7]. Note that dealing with weakly continuous maps is in some
sense closer to the usual finite dimensional case. The significant difference here
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is that the index must be considered on the boundary of a strongly open set that
is not open in weak topology. This difficulty is overcome by applying the idea of
relative rotation (index).

Before extending this index theory onto nonlinear Banach manifolds we
should solve another serious problem: an analogue of ordinary weak topology
is ill-posed on a manifold. Indeed, the chart on a manifold is regarded as an
open disk in model Banach space and it is not an open set in weak topology.
That is why we instead consider the topology of weak convergence, well-posed
on manifolds.

Let E be a Banach space. Determine on E a topology ω as follows. The open
sets from ω are subsets of E such that their intersections with any bounded set
B ⊂ E are open sets in B with respect to the topology in B induced from the
weak topology in E. Evidently ω is stronger than the weak topology of E. If E
is a reflexive Banach space, ω coincides with the topology of weak convergence
in E. We refer the reader to [19] for the proof of this statement. Some other
cases when ω coincides with the topology of weak convergence are also described
in [19].

Let now E be a reflexive Banach space. Denote its strong topology (topology
of the norm) by τ .

Definition 28. Bimanifold modelled on E is a manifold with the following
additional properties:

(i) the charts are open sets in the topology ω (and so also in τ) on E,
(ii) the changes of coordinates (i.e., the transition maps from one chart to

another) are homeomorphisms both with respect to τ and with respect
to ω.

Among examples of bimanifolds there are several manifolds of maps, Hilbert
space spheres, etc.

In order to realise our scheme for introducing the total index here, we make
the following

Assumption 29. A bimanifold M is such that:

(i) M can be embedded in a reflexive Banach space E1 so that the embedding
is continuous with respect to topology ω both in M and in E1,

(ii) there is a neighbourhood U of M in E1 with respect to ω that is retracted
onto M by a retraction r continuous with respect to ω.

Below in this section M denotes a bimanifold satisfying Assumption 29.

Definition 30. A map f : M →M is called weakly compact if it is contin-
uous with respect to ω and the image f(M) is compact with respect to ω.
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As before, define the map F : U → U by the formula F = f ◦ r. Obviously
F is continuous in ω and F (U) is compact in ω. By the Eberlein–Shmulyan
theorem, F (U) is weakly compact in E1 and so it is weakly closed and bounded
by the norm in E1 since E1 is reflexive.

Let B ⊂ E1 be a closed ball in E1 containing the bounded set F (U). By the
definition of ω we have B ∩ U = B ∩ V where V is a certain weakly open set in
E1. Obviously there exists a weakly open set V1 ⊃ F (U) whose weak closure V 1

is contained in V . Consider the set B ∩ V 1 ⊂ B ∩ U . The operator F is defined
on B∩V 1 and there are no fixed points of F on the relative boundary (B∩V 1)•.
Thus the relative rotation γ(I−F, (B∩V 1)•, B), (see [4]) known as the rotation
of weakly compact vector fields ([2], [3], etc., see above) is well-posed.

Definition 31. γ(I − F, (B ∩ V 1)•, B) is called the total index or the Lef-
schetz number of the weakly continuous map f on the bimanifold M and is
denoted by Λf .

In the same manner as in previous sections it is shown that Λf is independent
of all choices in its construction (cf. Section 1) and so it is in fact an internal
topological characteristic in M .

Λf is constant under homotopies in the same class of maps, if it is not equal
to 0, f has a fixed point in M , etc.

The local index γ(f, Ẇ ) is constructed in complete analogy with Section 1
and has usual properties.
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[1] R. R. Akhmerov, M. I. Kamenskĭı, A. S. Potapov, A. E. Rodkina and B. N. Sa-
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