Existence and uniqueness of a renormalized solution to fractional elliptic inclusions with L^1-data
DOI:
https://doi.org/10.12775/TMNA.2025.013Słowa kluczowe
Renormalized solution, regional fractional Laplacian, inclusion, existence, uniquenessAbstrakt
Let $d \in \Ni$ and $\Omega \subset \Ri^d$ be bounded with Lipschitz boundary. We prove the existence and uniqueness of a renormalized solution to the inclusion problem \[ \begin{cases} \beta(u) + Lu \ni f & \mbox{in } \Omega, \\ u = 0 & \mbox{in } \D\Omega, \end{cases} \] where $f \in L^1(\Omega)$, the operator $L$ generalizes the regional fractional $p$-Laplacian with $1 < p < \infty$ and $\beta$ is a maximal monotone operator on $\Ri$. A comparison between renormalized and weak solutions is also discussed.Bibliografia
B. Abdellaoui, A. Attar and R. Bentifour, On the fractional p-Laplacian equations with weight and general datum, Adv. Nonlinear Anal. 8 (2019), 144–174.
R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Academic Press, The Netherlands, 2003.
N. Alibaud, B. Andreianov and M. Bendahmane, Renormalized solutions of the fractional Laplace equation, C.R. Acad. Sci. Paris, Ser. I 348 (2010), 759–762.
M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 -data, J. Differential Equations 249 (2010), 1483–1515.
G.M. Bisci, V.D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, first edition, Encyclopedia of Mathematics and its Applications, vol. 162, Cambridge University Press, United Kingdom, 2016.
D. Blanchard, O. Guibe and H. Redwane, Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities, Commun. Pure Appl. Anal. 15 (2016), no. 1, 179–217.
D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations 177 (2001), 331–374.
H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.
I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda and A. WróblewskaKaminńska, Renormalized Solutions, Partial Differential Equations in Anisotropic Musielak–Orlicz Spaces, Springer Monographs in Mathematics, Springer, Cham, 2021.
R.J. DiPerna and P.L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math. 130 (1989), no. 2, 321–366.
T.D. Do, Fundamental solutions of generalized non-local Schrödinger operators, Ark. Mat. 60 (2022), 43–66.
T.D. Do, L.X. Truong and N.N. Trong, Renormalized solutions to a parabolic equation with mixed boundary constraints, Diss. Math. 593 (2024), 46 pp.
P. Gwiazda, P. Wittbold, A. Wróblewska-Kaminńska and A. Zimmermann, Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differential Equations 253 (2012), 635–666.
P. Gwiazda, P. Wittbold, A. Wróblewska-Kaminńska and A. Zimmermann, Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces, Nonlinear Anal. 129 (2015), 1–36.
J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires, Dunod, Paris, 1969.
J. Peypouquet and S. Sorin, Evolution equations for maximal monotone operators: Asymptotic analysis in continuous and discrete time, J. Convex Anal. 17 (2010), 1113–1163.
A. Prignet, Remarks on existence and uniqueness of solutions of elliptic problems with right hand side measures, Rend. Mat. Appl. 15 (1995), no. 7, 321–337.
J. Serrin, Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (1964), no. 3, 385–387.
G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Séminaire Jean Leray 3 (1964), 1–77.
K. Teng, C. Zhang and S. Zhou, Renormalized and entropy solutions for the fractional p-Laplacian evolution equations, J. Evol. Equ. 19 (2019), 559–584.
N.N. Trong, T.D. Do and B.L.T. Thanh, On the strong maximum principle for a fractional Laplacian, Arch. Math. 117 (2021), 203–213.
N.N. Trong, B.L.T. Thanh and T.D. Do, A Degenerate forward-backward problem involving the spectral Dirichlet Laplacian, Acta Math. Vietnam. 49 (2024), 691–718.
P. Wittbold and A. Zimmermann, Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and L1 -data, Nonlinear Anal. Theory Methods Appl. 72 (2010), 2990–3008.
C. Zhang and X. Zhang, Renormalized solutions for the fractional p(x)-Laplacian equation with L1 data, Nonlinear Anal. 190 (2020), 111610, 15 pp.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Le Xuan Truong, Nguyen Ngoc Trong, Huynh Cao Truong, Tan Duc Do

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0