Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence and uniqueness of a renormalized solution to fractional elliptic inclusions with L^1-data
  • Home
  • /
  • Existence and uniqueness of a renormalized solution to fractional elliptic inclusions with L^1-data
  1. Home /
  2. Archives /
  3. Vol 66, No 1 (September 2025) /
  4. Articles

Existence and uniqueness of a renormalized solution to fractional elliptic inclusions with L^1-data

Authors

  • Le Xuan Truong https://orcid.org/0000-0003-2328-6235
  • Nguyen Ngoc Trong https://orcid.org/0000-0002-1582-2424
  • Huynh Cao Truong https://orcid.org/ 0000-0002-9805-1046
  • Tan Duc Do https://orcid.org/0000-0001-5913-6613

DOI:

https://doi.org/10.12775/TMNA.2025.013

Keywords

Renormalized solution, regional fractional Laplacian, inclusion, existence, uniqueness

Abstract

Let $d \in \Ni$ and $\Omega \subset \Ri^d$ be bounded with Lipschitz boundary. We prove the existence and uniqueness of a renormalized solution to the inclusion problem \[ \begin{cases} \beta(u) + Lu \ni f & \mbox{in } \Omega, \\ u = 0 & \mbox{in } \D\Omega, \end{cases} \] where $f \in L^1(\Omega)$, the operator $L$ generalizes the regional fractional $p$-Laplacian with $1 < p < \infty$ and $\beta$ is a maximal monotone operator on $\Ri$. A comparison between renormalized and weak solutions is also discussed.

References

B. Abdellaoui, A. Attar and R. Bentifour, On the fractional p-Laplacian equations with weight and general datum, Adv. Nonlinear Anal. 8 (2019), 144–174.

R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Academic Press, The Netherlands, 2003.

N. Alibaud, B. Andreianov and M. Bendahmane, Renormalized solutions of the fractional Laplace equation, C.R. Acad. Sci. Paris, Ser. I 348 (2010), 759–762.

M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 -data, J. Differential Equations 249 (2010), 1483–1515.

G.M. Bisci, V.D. Radulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, first edition, Encyclopedia of Mathematics and its Applications, vol. 162, Cambridge University Press, United Kingdom, 2016.

D. Blanchard, O. Guibe and H. Redwane, Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities, Commun. Pure Appl. Anal. 15 (2016), no. 1, 179–217.

D. Blanchard, F. Murat and H. Redwane, Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differential Equations 177 (2001), 331–374.

H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Amsterdam, 1973.

I. Chlebicka, P. Gwiazda, A. Świerczewska-Gwiazda and A. WróblewskaKaminńska, Renormalized Solutions, Partial Differential Equations in Anisotropic Musielak–Orlicz Spaces, Springer Monographs in Mathematics, Springer, Cham, 2021.

R.J. DiPerna and P.L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. Math. 130 (1989), no. 2, 321–366.

T.D. Do, Fundamental solutions of generalized non-local Schrödinger operators, Ark. Mat. 60 (2022), 43–66.

T.D. Do, L.X. Truong and N.N. Trong, Renormalized solutions to a parabolic equation with mixed boundary constraints, Diss. Math. 593 (2024), 46 pp.

P. Gwiazda, P. Wittbold, A. Wróblewska-Kaminńska and A. Zimmermann, Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differential Equations 253 (2012), 635–666.

P. Gwiazda, P. Wittbold, A. Wróblewska-Kaminńska and A. Zimmermann, Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces, Nonlinear Anal. 129 (2015), 1–36.

J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires, Dunod, Paris, 1969.

J. Peypouquet and S. Sorin, Evolution equations for maximal monotone operators: Asymptotic analysis in continuous and discrete time, J. Convex Anal. 17 (2010), 1113–1163.

A. Prignet, Remarks on existence and uniqueness of solutions of elliptic problems with right hand side measures, Rend. Mat. Appl. 15 (1995), no. 7, 321–337.

J. Serrin, Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (1964), no. 3, 385–387.

G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Séminaire Jean Leray 3 (1964), 1–77.

K. Teng, C. Zhang and S. Zhou, Renormalized and entropy solutions for the fractional p-Laplacian evolution equations, J. Evol. Equ. 19 (2019), 559–584.

N.N. Trong, T.D. Do and B.L.T. Thanh, On the strong maximum principle for a fractional Laplacian, Arch. Math. 117 (2021), 203–213.

N.N. Trong, B.L.T. Thanh and T.D. Do, A Degenerate forward-backward problem involving the spectral Dirichlet Laplacian, Acta Math. Vietnam. 49 (2024), 691–718.

P. Wittbold and A. Zimmermann, Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and L1 -data, Nonlinear Anal. Theory Methods Appl. 72 (2010), 2990–3008.

C. Zhang and X. Zhang, Renormalized solutions for the fractional p(x)-Laplacian equation with L1 data, Nonlinear Anal. 190 (2020), 111610, 15 pp.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-10-01

How to Cite

1.
TRUONG, Le Xuan, TRONG, Nguyen Ngoc, TRUONG, Huynh Cao and DO, Tan Duc. Existence and uniqueness of a renormalized solution to fractional elliptic inclusions with L^1-data. Topological Methods in Nonlinear Analysis. Online. 1 October 2025. Vol. 66, no. 1, pp. 237 - 272. [Accessed 12 December 2025]. DOI 10.12775/TMNA.2025.013.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 66, No 1 (September 2025)

Section

Articles

License

Copyright (c) 2025 Le Xuan Truong, Nguyen Ngoc Trong, Huynh Cao Truong, Tan Duc Do

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop