Topological complexity of oriented Grassmann manifolds
DOI:
https://doi.org/10.12775/TMNA.2025.001Słowa kluczowe
Topological complexity, Grassmann manifolds, zero-divisor cup-lengthAbstrakt
We study the topological complexity of the Grassmann manifolds $\widetilde G_{n,3}$ of oriented $3$-dimensional vector subspaces in $\mathbb R^n$. By a result of Farber, for any field $K$, the topological complexity of a space $X$ is greater than $\zcl_{K}(X)$, where $\zcl_{K}(X)$ is the $K$-zero-divisor cup-length of $X$. In this paper we examine $\zcl_{\mathbb{Z}_2}(\widetilde G_{n,3})$. Some lower and upper bounds for this invariant are obtained for all integers $n\ge6$. For infinitely many of them the exact value of $\zcl_{\mathbb Z_2}(\widetilde G_{n,3})$ is computed, and in the rest of the cases these bounds differ by 1. We thus establish lower bounds for the topological complexity of Grassmannians $\widetilde G_{n,3}$.Bibliografia
S. Basu and P. Chakraborty, On the cohomology ring and upper characteristic rank of Grassmannian of oriented 3-planes, J. Homotopy Relat. Struct. 15 (2020), 27–60.
D. Cohen and A. Suciu, Boundary manifolds of projective hypersurfaces, Adv. Math. 206 (2006), 538–566.
D. Cohen and L. Vandembroucq, Topological complexity of the Klein bottle, J. Appl. Comput. Topol. 1 (2017), 199–213.
U.A. Colović and B.I. Prvulović, Cup-length of oriented Grassmann manifolds via Gröbner bases, J. Algebra 642 (2024), 256–285.
U.A. Colović, B.I. Prvulović and M. Radovanović, Topological complexity of oriented Grassmann manifolds, arXiv:2402.13336 [math.AT].
A. Dranishnikov, On topological complexity of non-orientable surfaces, Topology Appl. 232 (2017), 61–69.
M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211–221.
M. Farber, Invitation to Topological Robotics, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008.
M. Farber, S. Tabachnikov and S. Yuzvinsky, Topological robotics: Motion planning in projective spaces, Int. Math. Res. Not. 34 (2003), 1853–1870.
T. Fukaya, Gröbner bases of oriented Grassmann manifolds, Homol. Homotopy Appl. 10 (2008), no. 2, 195–209.
J. Gonzalez, M. Grant and L. Vandembroucq, Hopf invariants for sectional category with applications to topological robotics, Q. J. Math. 70 (2019), 1209–1252.
M. Grant, G. Lupton and J. Oprea, Spaces of topological complexity one, Homology Homotopy Appl. 15 (2013), 73–81.
I.M. James, On category, in the sense of Lusternik–Schnirelmann, Topology 17 (1978), 331–348.
J. Korbaš, The characteristic rank and cup-length in oriented Grassmann manifolds, Osaka J. Math. 52 (2015), 1163–1172.
Á.K. Matszangosz and M. Wendt, The mod 2 cohomology rings of oriented Grassmannians via Koszul complexes, Math. Z. 308 (2024), article no. 2.
P. Pavešić, Manifolds with small topological complexity, Algebr. Geom. Topol. 24, no. 3 (2024), 1713–1723.
P. Pavešić, Topological complexity of real Grassmannians, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), 2013–2029.
M. Radovanović, On the topological complexity and zero-divisor cup-length of real Grassmannians, Proc. Roy. Soc. Edinburgh Sect. A 153 (2023), 702–717.
V. Ramani, On the topological complexity of Grassmann manifolds, Math. Slovaca 70 (2020), no. 5, 1197–1210.
A.S. Xvarc, Rod rassloennogo prostranstva, Dokl. AN SSSR 119 (1958), no. 2, 219–222; English transl.: A.S. Schwarz, On the genus of a fiber space, Fourteen Papers on Logic, Algebra, Complex Variables and Topology, Amer. Math. Soc. Trans. Ser. 2, 1965, pp. 156–160.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Uroš A. Colović, Branislav I. Prvulović, Marko Radovanović

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0