Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topological complexity of oriented Grassmann manifolds
  • Home
  • /
  • Topological complexity of oriented Grassmann manifolds
  1. Home /
  2. Archives /
  3. Vol 66, No 1 (September 2025) /
  4. Articles

Topological complexity of oriented Grassmann manifolds

Authors

  • Uroš A. Colović
  • Branislav I. Prvulović
  • Marko Radovanović https://orcid.org/0000-0002-6990-1793

DOI:

https://doi.org/10.12775/TMNA.2025.001

Keywords

Topological complexity, Grassmann manifolds, zero-divisor cup-length

Abstract

We study the topological complexity of the Grassmann manifolds $\widetilde G_{n,3}$ of oriented $3$-dimensional vector subspaces in $\mathbb R^n$. By a result of Farber, for any field $K$, the topological complexity of a space $X$ is greater than $\zcl_{K}(X)$, where $\zcl_{K}(X)$ is the $K$-zero-divisor cup-length of $X$. In this paper we examine $\zcl_{\mathbb{Z}_2}(\widetilde G_{n,3})$. Some lower and upper bounds for this invariant are obtained for all integers $n\ge6$. For infinitely many of them the exact value of $\zcl_{\mathbb Z_2}(\widetilde G_{n,3})$ is computed, and in the rest of the cases these bounds differ by 1. We thus establish lower bounds for the topological complexity of Grassmannians $\widetilde G_{n,3}$.

References

S. Basu and P. Chakraborty, On the cohomology ring and upper characteristic rank of Grassmannian of oriented 3-planes, J. Homotopy Relat. Struct. 15 (2020), 27–60.

D. Cohen and A. Suciu, Boundary manifolds of projective hypersurfaces, Adv. Math. 206 (2006), 538–566.

D. Cohen and L. Vandembroucq, Topological complexity of the Klein bottle, J. Appl. Comput. Topol. 1 (2017), 199–213.

U.A. Colović and B.I. Prvulović, Cup-length of oriented Grassmann manifolds via Gröbner bases, J. Algebra 642 (2024), 256–285.

U.A. Colović, B.I. Prvulović and M. Radovanović, Topological complexity of oriented Grassmann manifolds, arXiv:2402.13336 [math.AT].

A. Dranishnikov, On topological complexity of non-orientable surfaces, Topology Appl. 232 (2017), 61–69.

M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), 211–221.

M. Farber, Invitation to Topological Robotics, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008.

M. Farber, S. Tabachnikov and S. Yuzvinsky, Topological robotics: Motion planning in projective spaces, Int. Math. Res. Not. 34 (2003), 1853–1870.

T. Fukaya, Gröbner bases of oriented Grassmann manifolds, Homol. Homotopy Appl. 10 (2008), no. 2, 195–209.

J. Gonzalez, M. Grant and L. Vandembroucq, Hopf invariants for sectional category with applications to topological robotics, Q. J. Math. 70 (2019), 1209–1252.

M. Grant, G. Lupton and J. Oprea, Spaces of topological complexity one, Homology Homotopy Appl. 15 (2013), 73–81.

I.M. James, On category, in the sense of Lusternik–Schnirelmann, Topology 17 (1978), 331–348.

J. Korbaš, The characteristic rank and cup-length in oriented Grassmann manifolds, Osaka J. Math. 52 (2015), 1163–1172.

Á.K. Matszangosz and M. Wendt, The mod 2 cohomology rings of oriented Grassmannians via Koszul complexes, Math. Z. 308 (2024), article no. 2.

P. Pavešić, Manifolds with small topological complexity, Algebr. Geom. Topol. 24, no. 3 (2024), 1713–1723.

P. Pavešić, Topological complexity of real Grassmannians, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), 2013–2029.

M. Radovanović, On the topological complexity and zero-divisor cup-length of real Grassmannians, Proc. Roy. Soc. Edinburgh Sect. A 153 (2023), 702–717.

V. Ramani, On the topological complexity of Grassmann manifolds, Math. Slovaca 70 (2020), no. 5, 1197–1210.

A.S. Xvarc, Rod rassloennogo prostranstva, Dokl. AN SSSR 119 (1958), no. 2, 219–222; English transl.: A.S. Schwarz, On the genus of a fiber space, Fourteen Papers on Logic, Algebra, Complex Variables and Topology, Amer. Math. Soc. Trans. Ser. 2, 1965, pp. 156–160.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-10-01

How to Cite

1.
COLOVIĆ, Uroš A., PRVULOVIĆ, Branislav I. and RADOVANOVIĆ, Marko. Topological complexity of oriented Grassmann manifolds. Topological Methods in Nonlinear Analysis. Online. 1 October 2025. Vol. 66, no. 1, pp. 21 - 49. [Accessed 12 December 2025]. DOI 10.12775/TMNA.2025.001.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 66, No 1 (September 2025)

Section

Articles

License

Copyright (c) 2025 Uroš A. Colović, Branislav I. Prvulović, Marko Radovanović

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop