Strong surjections from two-complexes with trivial top-cohomology onto nonorientable surfaces
DOI:
https://doi.org/10.12775/TMNA.2024.011Słowa kluczowe
Strong surjections, two-complexes, nonorientable surfacesAbstrakt
For every nonorientable closed surface $\U$, we present a strong surjection $f\colon X\to\U$, where $X$ is a finite two-dimensional {\sc cw}-complex with trivial second integer cohomology group. This provides an answer, for all nonorientable closed surfaces, to a problem in topological root theory for which we have hitherto known solutions only for the sphere, the torus, the projective plane and the Klein bottle.Bibliografia
C. Aniz, Strong surjectivity of mappings of some 3-complexes into 3-manifolds, Fund. Math. 192 (2006), 195–214.
C. Aniz, Strong surjectivity of mappings of some 3-complexes into MQ8 , Cent. Eur. J. Math 6 (2008), no. 4, 497–503.
C. Aniz, Linear systems over Z[Q16 ] and roots of maps of some 3-complexes into MQ16 , Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 4, 501–522.
C. Aniz, Linear systems over Z[Q32 ] and roots of maps of some 3-complexes into MQ32 , Topology Appl. 293 (2021), 107566, 30 pp.
M.C. Fenille, Strong surjections from two-complexes with trivial top-cohomology onto the torus, Topol. Appl. 210 (2016), 63–69.
M.C. Fenille, Convenient maps from one-relator model two-complexes into the real projective plane, Topol. Methods Nonlinear Anal. 52 (2018), no. 2, 613–629.
M.C. Fenille and D.L. Gonçalves, Strongly surjective maps from certain two-complexes with trivial top cohomology onto the projective plane, New York J. Math 27 (2021), 615–630.
M.C. Fenille, D.L. Gonçalves and O.M. Neto, Strong surjections from two-complexes with odd order top-cohomology onto the projective plane, J. Fixed Point Theory Appl. 25 (2023), article number 62.
A.J. Sieradski, Algebraic topology for two-dimensional complexes, Two-dimensional Homotopy and Combinatorial Group Theory (C. Hog-Angeloni, W. Metzler and A.J. Sieradski, eds.), Cambridge University Press, 1993, pp. 51–96.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2024 Marcio Colombo Fenille
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0