Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Strong surjections from two-complexes with trivial top-cohomology onto nonorientable surfaces
  • Home
  • /
  • Strong surjections from two-complexes with trivial top-cohomology onto nonorientable surfaces
  1. Home /
  2. Archives /
  3. Vol 64, No 2 (December 2024) /
  4. Articles

Strong surjections from two-complexes with trivial top-cohomology onto nonorientable surfaces

Authors

  • Marcio Colombo Fenille https://orcid.org/0000-0001-8146-3143

DOI:

https://doi.org/10.12775/TMNA.2024.011

Keywords

Strong surjections, two-complexes, nonorientable surfaces

Abstract

For every nonorientable closed surface $\U$, we present a strong surjection $f\colon X\to\U$, where $X$ is a finite two-dimensional {\sc cw}-complex with trivial second integer cohomology group. This provides an answer, for all nonorientable closed surfaces, to a problem in topological root theory for which we have hitherto known solutions only for the sphere, the torus, the projective plane and the Klein bottle.

References

C. Aniz, Strong surjectivity of mappings of some 3-complexes into 3-manifolds, Fund. Math. 192 (2006), 195–214.

C. Aniz, Strong surjectivity of mappings of some 3-complexes into MQ8 , Cent. Eur. J. Math 6 (2008), no. 4, 497–503.

C. Aniz, Linear systems over Z[Q16 ] and roots of maps of some 3-complexes into MQ16 , Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 4, 501–522.

C. Aniz, Linear systems over Z[Q32 ] and roots of maps of some 3-complexes into MQ32 , Topology Appl. 293 (2021), 107566, 30 pp.

M.C. Fenille, Strong surjections from two-complexes with trivial top-cohomology onto the torus, Topol. Appl. 210 (2016), 63–69.

M.C. Fenille, Convenient maps from one-relator model two-complexes into the real projective plane, Topol. Methods Nonlinear Anal. 52 (2018), no. 2, 613–629.

M.C. Fenille and D.L. Gonçalves, Strongly surjective maps from certain two-complexes with trivial top cohomology onto the projective plane, New York J. Math 27 (2021), 615–630.

M.C. Fenille, D.L. Gonçalves and O.M. Neto, Strong surjections from two-complexes with odd order top-cohomology onto the projective plane, J. Fixed Point Theory Appl. 25 (2023), article number 62.

A.J. Sieradski, Algebraic topology for two-dimensional complexes, Two-dimensional Homotopy and Combinatorial Group Theory (C. Hog-Angeloni, W. Metzler and A.J. Sieradski, eds.), Cambridge University Press, 1993, pp. 51–96.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-09-21

How to Cite

1.
FENILLE, Marcio Colombo. Strong surjections from two-complexes with trivial top-cohomology onto nonorientable surfaces. Topological Methods in Nonlinear Analysis. Online. 21 September 2024. Vol. 64, no. 2, pp. 471 - 477. [Accessed 12 December 2025]. DOI 10.12775/TMNA.2024.011.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 64, No 2 (December 2024)

Section

Articles

License

Copyright (c) 2024 Marcio Colombo Fenille

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop