Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Weighted fourth order equation of Kirchhoff type in dimension 4 with non-linear exponential growth
  • Strona domowa
  • /
  • Weighted fourth order equation of Kirchhoff type in dimension 4 with non-linear exponential growth
  1. Strona domowa /
  2. Archiwum /
  3. Vol 61, No 2 (June 2023) /
  4. Articles

Weighted fourth order equation of Kirchhoff type in dimension 4 with non-linear exponential growth

Autor

  • Rached Jaidane https://orcid.org/0000-0001-7241-6847

DOI:

https://doi.org/10.12775/TMNA.2023.005

Słowa kluczowe

Kirchhoff-Schrödinger equation, Adams' inequality, nonlinearity of exponential growth, mountain pass method, compactness level

Abstrakt

In this work, we are concerned with the existence of a ground state solution for a Kirchhoff weighted problem under boundary Dirichlet condition in the unit ball of $\mathbb{R}^{4}$. The nonlinearities have critical growth in view of Adams' inequalities. To prove the existence result, we use Pass Mountain Theorem. The main difficulty is the loss of compactness due to the critical exponential growth of the nonlinear term $f$. The associated energy function does not satisfy the condition of compactness. We provide a new condition for growth and we stress its importance to check the min-max compactness level.

Bibliografia

D.R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385–398.

F.S.B. Albuquerque, A. Bahrouni and U. Severo, Existence of solutions for a nonhomogeneous Kirchhoff–Schrödinger type equation in R2 involving unbounded or decaying potentials, Topol. Methods Nonlinear Anal. 56 (2020), no. 1, 263–281, DOI: 10.12775/TMNA.2020.013.

C.O. Alves, F.J.S.A. Corrêa and T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type,, Comput. Math. Appl. 49 (2005), 85–93.

C.O. Alves and F.J.S.A. Corrêa, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal. 8 (2001), 43–56.

A. Ambrosetti and P.H. Rabionowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal.14 (1973), 349–381.

S. Baraket and R. Jaidane, Non-autonomous weighted elliptic equations with double exponential growth, An. Şt. Univ. ,,Ovidius” Constanţa 29 (2021), no. 3, 33–66.

M. Calanchi and B. Ruf, Trudinger–Moser type inequalities with logarithmic weights in dimension N , Nonlinear Anal. 121 (2015), 403-411, DOI: 10.1016/j.na.2015.02.001.

M. Calanchi, B. Ruf and F. Sani, Elliptic equations in dimension 2 with double exponential nonlinearities, NoDea Nonlinear Differ. Equ. Appl. 24 (2017), Art. 29, DOI: 10.1007/s00030-017-0453-y.

B. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems, J. Math. Anal. Appl.394 (2012), 488–495.

S. Chen, X. Tang and J. Wei, Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth, Z. Angew. Math. Phys. 72 (2021), 38, DOI: 10.1007/s00033-020-01455-w.

M. Chipot and B. Lovat, Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal. 30 (1997), 4619–4627.

M. Chipot and J.F. Rodrigues, On a class of nonlocal nonlinear elliptic problems, RAIRO Modélisation Mathématique et Analyse Numérique 26 (1992), 447–467.

S. Deng, T. Hu and C. Tang, N -Laplacian problems with critical double exponential nonlinearities, DIiscrete Contin .Syst. 41 (2021), 987–1003.

P. Drabek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin, 1997. DOI: 10.1515/9783110804775.

D.G. de Figueiredo, O.H. Miyagaki and B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 139–153, DOI: 10.1007/BF01205003.

G.M. Figueiredo and U.B. Severo, Ground state solution for a Kirchhoff problem with exponential critical growth, Milan J. Math. 84 (2016), no. 1, 23–39.

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1876.

M.K.-H. Kiessling, Statistical Mechanics of Classical Particles with Logarithmic Interactions, Communications on Pure and Applied Mathematics, vol. 46, 1993, pp. 27–56, DOI: 10.1002/cpa.3160460103.

J.L.Lions, On Some Questions in Boundary Value Problems of Mathematical Physics, North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, New York, 1978.

P.L. Lions, The concentration-compactness principle in the calculus of variations, Part 1, Rev. Mat. Iberoam. 11 (1985), 185–201.

B. Ruf and F. Sani, Sharp Adams-type inequalities in RN , Trans. Amer. Math. Soc. 365 (2013), no. 2, 645–670.

F. Sani, A biharmonic equation in R4 involving nonlinearities with critical exponential growth, Comm. Pure Appl. Anal. 12 (2013), no. 1, 405–428, DOI: 10.3934/cpaa.2013.12.405.

L. Wang and M. Zhu, Adams’ inequality with logarithm weight in R4 , Proc. Amer. Math. Soc. 149 (2021), no. 8, 3463–3472, DOI: org/10.1090/proc/15488.

C. Zhang, Concentration-compactness principle for Trudinger–Moser inequalities with logarithmic weights and their applications,4 Nonlinear Anal. 197 (2020), 1–22.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2023-07-16

Jak cytować

1.
JAIDANE, Rached. Weighted fourth order equation of Kirchhoff type in dimension 4 with non-linear exponential growth. Topological Methods in Nonlinear Analysis [online]. 16 lipiec 2023, T. 61, nr 2, s. 889–916. [udostępniono 6.7.2025]. DOI 10.12775/TMNA.2023.005.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 61, No 2 (June 2023)

Dział

Articles

Licencja

Prawa autorskie (c) 2023 Rached Jaidane

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa