Autor

DOI:

https://doi.org/10.12775/TMNA.2021.045

Słowa kluczowe

Abstrakt

Bibliografia

C. Alves and G. Figueiredo, Existence of positive solution for a planar Schrödinger–Poisson system with exponential growth, J. Math. Phys. 60 (2019), no. 1, 011503, 13.

C. Alves, M. Souto and S. Soares, A sign-changing solution for the Schrödinger–Poisson equation in R3 , Rocky Mountain J. Math. 47 (2017), no. 1, 1–25.

C. Alves and M. Yang, Existence of positive multi-bump solutions for a Schrödinger–Poisson system in R3 , Discrete Contin. Dyn. Syst. 36 (2016), no. 11, 5881–5910.

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger–Poisson problem, Commun. Contemp. Math. 10 (2008), no. 3, 391–404.

A. Azzollini, Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity, J. Differential Equations 249 (2010), no. 7, 1746–1763.

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl. 345 (2008), no. 1, 90–108.

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Universitext, Springer, London, 2011, Existence results via the variational approach.

T. Bartsch, Z. Liu and T. Weth, Nodal solutions of a p-Laplacian equation, Proc. London Math. Soc. (3) 91 (2005), no. 1, 129–152.

T. Bartsch and Z. Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7 (1996), no. 1, 115–131.

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), no. 2, 283–293.

M. Bertin, B. Pimentel, C. Valcárcel and G. Zambrano, Hamilton–Jacobi formalism for Podolsky’s electromagnetic theory on the null-plane, J. Math. Phys. 58 (2017), no. 8, 082902, 21.

M. Bertin, B. Pimentel and G. Zambrano, The canonical structure of Podolsky’s generalized electrodynamics on the null-plane, J. Math. Phys. 52 (2011), no. 10, 102902, 12.

F. Bopp, Eine lineare Theorie des Elektrons, Ann. Physik (5) 38 (1940), 345–384.

G. Cerami and R. Molle, Positive bound state solutions for some Schrödinger–Poisson systems, Nonlinearity 29 (2016), no. 10, 3103–3119.

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger–Poisson systems, J. Differential Equations. 248 (2010), no. 3, 521–543.

S. Chen and X. Tang, Ground state sign-changing solutions for a class of Schrödinger–Poisson type problems in R3 , Z. Angew. Math. Phys. 67 (2016), no. 4, Art. 102, 18.

P. d’Avenia and G. Siciliano, Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case, J. Differential Equations 267 (2019), no. 2, 1025–1065.

J. Liu, X. Liu and Z. Wang, Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differential Equations. 52 (2015), no. 3–4, 565–586.

Z. Liu, Y. Lou and J. Zhang, A perturbation approach to stuying sign-changing solutions of Kirchhoff equations with a general nonlinearity, arXiv: 1812.09240v2.

Z. Liu and J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations 172 (2001), no. 2, 257–299.

Z. Liu, Z. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system, Ann. Mat. Pura Appl. (4) 195 (2016), no. 3, 775–794.

E. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger–Poisson system, Differential Integral Equations 30 (2017), no. 3–4, 231–258.

E. Murcia and G. Siciliano, Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity, J. Math. Anal. Appl. 474 (2019), no. 1, 544–571.

B. Podolsky, A generalized electrodynamics. I. Nonquantum, Phys. Rev. (2) 62 (1942), 68–71.

B. Podolsky and P. Schwed, Review of a generalized electrodynamics, Rev. Modern Physics 20 (1948), 40–50.

D. Ruiz, Semiclassical states for coupled Schrödinger–Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci. 15 (2005), no. 1, 141–164.

D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), no. 2, 655–674.

W. Shuai and Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in R3 , Z. Angew. Math. Phys. 66 (2015), no. 6, 3267–3282.

G. Siciliano and S. Kaye, The fibering method approach for a non-linear Schrö dinger equation coupled with the electromagnetic field, arXiv: 1806.05260v1.

Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger–Poisson system in R3 , Calc. Var. Partial Differential Equations 52 (2015), no. 3–4, 927–943.

M. Yang, Concentration of positive ground state solutions for Schrödinger–Maxwell systems with critical growth, Adv. Nonlinear Stud. 16 (2016), no. 3, 389–408.

M. Yang, F. Zhao and Y. Ding, On the existence of solutions for Schrödinger–Maxwell systems in R3 , Rocky Mountain J. Math. 42 (2012), no. 5, 1655–1674.

Opublikowane

2022-06-12

Jak cytować

1.
, & . Topological Methods in Nonlinear Analysis [online]. 12 czerwiec 2022, T. 59, nr 2B, s. 913–940. [udostępniono 22.7.2024]. DOI 10.12775/TMNA.2021.045.

Numer

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0