Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence and multiplicity of sign-changing solutions for a Schrödinger-Bopp-Podolsky system
  • Home
  • /
  • Existence and multiplicity of sign-changing solutions for a Schrödinger-Bopp-Podolsky system
  1. Home /
  2. Archives /
  3. Vol 59, No 2B (June 2022) /
  4. Articles

Existence and multiplicity of sign-changing solutions for a Schrödinger-Bopp-Podolsky system

Authors

  • Lixiong Wang
  • Haibo Chen
  • Senli Liu https://orcid.org/​​0000-0001-6859-1271

DOI:

https://doi.org/10.12775/TMNA.2021.045

Keywords

Schrödinger-Bopp-Podolsky system, Sign-changing solutions, Perturbation approach, Invariant sets of descending flow, Asymptotic behavior

Abstract

In this paper, we deal with the following Schrödinger-Bopp-Podolsky system: \begin{equation}\label{P1} \begin{cases} -\Delta u+u+\phi u=f(u), \\ -\Delta\phi +\varepsilon^{2}\Delta^{2}\phi =4\pi u^{2}, \end{cases} \tag{$\rom{P}_{\varepsilon}$} \quad \hbox{in }\mathbb{R}^{3}, \end{equation} where $\varepsilon> 0$ and $f$ is a continuous, superlinear and subcritical nonlinearity. By using a perturbation approach and the method of invariant sets of descending flow incorporated with minimax arguments, we prove the existence and multiplicity of sign-changing solutions of syste (P1). Moreover, the asymptotic behavior of sign-changing solutions is also established. Our results mainly extend the results in Liu, Wang and Zhang ([Liuzhaoli2016AMPA], Ann. Mat. Pura Appl. 2016).

References

C. Alves and G. Figueiredo, Existence of positive solution for a planar Schrödinger–Poisson system with exponential growth, J. Math. Phys. 60 (2019), no. 1, 011503, 13.

C. Alves, M. Souto and S. Soares, A sign-changing solution for the Schrödinger–Poisson equation in R3 , Rocky Mountain J. Math. 47 (2017), no. 1, 1–25.

C. Alves and M. Yang, Existence of positive multi-bump solutions for a Schrödinger–Poisson system in R3 , Discrete Contin. Dyn. Syst. 36 (2016), no. 11, 5881–5910.

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger–Poisson problem, Commun. Contemp. Math. 10 (2008), no. 3, 391–404.

A. Azzollini, Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity, J. Differential Equations 249 (2010), no. 7, 1746–1763.

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl. 345 (2008), no. 1, 90–108.

M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners, Universitext, Springer, London, 2011, Existence results via the variational approach.

T. Bartsch, Z. Liu and T. Weth, Nodal solutions of a p-Laplacian equation, Proc. London Math. Soc. (3) 91 (2005), no. 1, 129–152.

T. Bartsch and Z. Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7 (1996), no. 1, 115–131.

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal. 11 (1998), no. 2, 283–293.

M. Bertin, B. Pimentel, C. Valcárcel and G. Zambrano, Hamilton–Jacobi formalism for Podolsky’s electromagnetic theory on the null-plane, J. Math. Phys. 58 (2017), no. 8, 082902, 21.

M. Bertin, B. Pimentel and G. Zambrano, The canonical structure of Podolsky’s generalized electrodynamics on the null-plane, J. Math. Phys. 52 (2011), no. 10, 102902, 12.

F. Bopp, Eine lineare Theorie des Elektrons, Ann. Physik (5) 38 (1940), 345–384.

G. Cerami and R. Molle, Positive bound state solutions for some Schrödinger–Poisson systems, Nonlinearity 29 (2016), no. 10, 3103–3119.

G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger–Poisson systems, J. Differential Equations. 248 (2010), no. 3, 521–543.

S. Chen and X. Tang, Ground state sign-changing solutions for a class of Schrödinger–Poisson type problems in R3 , Z. Angew. Math. Phys. 67 (2016), no. 4, Art. 102, 18.

P. d’Avenia and G. Siciliano, Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case, J. Differential Equations 267 (2019), no. 2, 1025–1065.

J. Liu, X. Liu and Z. Wang, Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, Calc. Var. Partial Differential Equations. 52 (2015), no. 3–4, 565–586.

Z. Liu, Y. Lou and J. Zhang, A perturbation approach to stuying sign-changing solutions of Kirchhoff equations with a general nonlinearity, arXiv: 1812.09240v2.

Z. Liu and J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, J. Differential Equations 172 (2001), no. 2, 257–299.

Z. Liu, Z. Wang and J. Zhang, Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system, Ann. Mat. Pura Appl. (4) 195 (2016), no. 3, 775–794.

E. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger–Poisson system, Differential Integral Equations 30 (2017), no. 3–4, 231–258.

E. Murcia and G. Siciliano, Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity, J. Math. Anal. Appl. 474 (2019), no. 1, 544–571.

B. Podolsky, A generalized electrodynamics. I. Nonquantum, Phys. Rev. (2) 62 (1942), 68–71.

B. Podolsky and P. Schwed, Review of a generalized electrodynamics, Rev. Modern Physics 20 (1948), 40–50.

D. Ruiz, Semiclassical states for coupled Schrödinger–Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci. 15 (2005), no. 1, 141–164.

D. Ruiz, The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal. 237 (2006), no. 2, 655–674.

W. Shuai and Q. Wang, Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in R3 , Z. Angew. Math. Phys. 66 (2015), no. 6, 3267–3282.

G. Siciliano and S. Kaye, The fibering method approach for a non-linear Schrö dinger equation coupled with the electromagnetic field, arXiv: 1806.05260v1.

Z. Wang and H. Zhou, Sign-changing solutions for the nonlinear Schrödinger–Poisson system in R3 , Calc. Var. Partial Differential Equations 52 (2015), no. 3–4, 927–943.

M. Yang, Concentration of positive ground state solutions for Schrödinger–Maxwell systems with critical growth, Adv. Nonlinear Stud. 16 (2016), no. 3, 389–408.

M. Yang, F. Zhao and Y. Ding, On the existence of solutions for Schrödinger–Maxwell systems in R3 , Rocky Mountain J. Math. 42 (2012), no. 5, 1655–1674.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-06-12

How to Cite

1.
WANG, Lixiong, CHEN, Haibo and LIU, Senli. Existence and multiplicity of sign-changing solutions for a Schrödinger-Bopp-Podolsky system. Topological Methods in Nonlinear Analysis. Online. 12 June 2022. Vol. 59, no. 2B, pp. 913 - 940. [Accessed 8 July 2025]. DOI 10.12775/TMNA.2021.045.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2B (June 2022)

Section

Articles

License

Copyright (c) 2022 Lixiong Wang, Haibo Chen, Senli Liu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop