Autor

DOI:

https://doi.org/10.12775/TMNA.2021.063

Słowa kluczowe

Abstrakt

Bibliografia

S. Abhyankar, What is the difference between a parabola and a hyperbola?, The Mathematical Intelligence 10 (1988), no. 4, 36–43.

V. Arnold, Métodes Mathématiques de la Mécanique Classique, Moscou, 1976.

J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe, Geometric Configurations of Singularities of Planar Polynomial Differential Systems – A Global Classification in the Quadratic Case, Birkhäuser, Basel, 2021, 701 pp.

V.A. Baltag, Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems, Bull. Acad. Sci. Moldova Math 2 (2003), 31–46.

V.A. Baltag and N. Vulpe, Total multiplicity of all finite critical points of the polynomial differential system. Planar nonlinear dynamical systems (Delft, 1995), Differ. Equ. Dyn. Syst. 5 (1997), 455–471.

D. Bularas, Iu. Calin, L. Timochouk amd N. Vulpe, T -comitants of quadratic systems: a study via the translation invariants, Delft University of Technology, Faculty of Technical Mathematics and Informatics, Report no. 96–90, 1996.

L. Cairó and J. Llibre, Darbouxian first integrals and invariants for real quadratic systems having an invariant conic, J. Phys. A Math. Gen. 35 (2002), 589–608.

F. Cao and J. Jiang, The classification on the global phase portraits of two-dimensional Lotka–Volterra system, J. Dynam. Differential Equations 20 (2008), no. 4, 797–830.

S. Chandrasekhar, An Introduction to the Study of Stellar Structure, University of Chicago Press, Chicago, 1939.

J. Chavarriga, H. Giacomini and J. Llibre, Uniqueness of algebraic limit cycles for quadratic systems, J. Math. Anal. Appl. 261 (2001), 85–99.

C. Christopher, J. Llibre, J. V. Pereira, Multiplicity of invariant algebraic curves in polynomial vector fields, Pacific J. Math. 229 (2007), 63–117.

G. Darboux, Mémoire sur les équations différentielles du premier ordre et du premier degré, Bull. Sci. Math. 2 (1878), 60–96; 123–144; 151–200.

T.A. Druzhkova, The algebraic integrals of a certain differential equation, Differ. Equ. 4 (1968).

J.H. Grace and A. Young, The Algebra of Invariants, Stechert, New York, 1941.

D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), 437–479.

J.P. Jouanolou, Equations de Pfaff Algébriques, Lecture Notes in Math., Vol. 708, Springer, New York, 1979.

J. Llibre and D. Schlomiuk, The geometry of quadratic differential systems with a weak focus of third order, Canad. J. Math. 56 (2004), no. 2, 310–343.

J. Llibre and X. Zhang, Darboux theory of integrability in Cn taking into account the multiplicity, J. Differential Equations 246 (2009), no. 2, 541–551.

A.J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Natl. Acad. Sci. USA 6 (1920), 410–415.

R.D.S. Oliveira, A.C. Rezende, D. Schlomiuk and N. Vulpe, Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas, Electron. J. Differential Equations 295 (2017), 122 pp.

R.D.S. Oliveira, A.C. Rezende, D. Schlomiuk and N. Vulpe, Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials, Rev. Mat. Complut. (2021), DOI: 10.1007/s13163-02100398-8.

R.D.S. Oliveira, A.C. Rezende and N. Vulpe, Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space R12 , Electron. J. Differential Equations 162 (2016), 50 pp.

R.D.S. Oliveira, D. Schlomiuk and A.M. Travaglini, Geometry and integrability of quadratic systems with invariant hyperbolas, Electron. J. Qual. Theory Differ. Equ. 6 (2021), 56 pp.

R.D.S. Oliveira, D. Schlomiuk, A.M. Travaglini and C. Valls, Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability, Electron. J. Qual. Theory Differ. Equ. (2021), 90 pp.

P.J. Olver, Classical Invariant Theory, London Math. Soc. Stud. Texts, vol. 44, Cambridge University Press, 1999.

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, J. Math. Pures Appl. (4) 1 (1885), 167–244; O euvres de Henri Poincaré, vol. 1, Gauthier–Villard, Paris, 1951, pp. 95–114.

H. Poincaré, Sur l’intégration algébrique des équations différentielles, C.R. Acad. Sci. Paris 112 (1891), 761–764.

H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré, I. Rend. Circ. Mat. Palermo 5 (1891), 169–191.

Y.-X. Qin, On the algebraic limit cycles of second degree of the differential equation , Chin. Math. Acta 8 (1996), p. 608.

J.W. Reyn, Phase portraits of a quadratic system of differential equations occurring frequently in applications, Nieuw Arch. Wisk. (4) 5 (1987), no. 2, 107–151.

J.R. Roth, Periodic small-amplitude solutions to Volterra’s problem of two conflicting populations and their application to the plasma continuity equations, J. Math. Phys. 10 (1969), 1–43.

D. Schlomiuk, Topological and polynomial invariants, moduli spaces, in classification problems of polynomial vector fields, Publ. Mat. 58 (2014), 461–496.

D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields, Exposition. Math. 8 (1990), no. 1, 3–25.

D. Schlomiuk and J. Pal, On the geometry in the neighborhood of infinity of quadratic differential systems with a weak focus, Qual. Theory Dyn. Syst. 2 (2001), no. 1, 1–43.

D. Schlomiuk and N. Vulpe, Planar quadratic differential systems with invariant straight lines of at least five total multiplicity, Qual. Theory Dyn. Syst. 5 (2004), 135–194.

D. Schlomiuk and N. Vulpe, Geometry of quadratic differential systems in the neighborhood of the line at infinity, J. Differential Equations 215 (2005), 357–400.

D. Schlomiuk and N. Vulpe, Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity, Rocky Mountain J. Math. 38 (2008), 1–60.

D. Schlomiuk and N. Vulpe, Planar quadratic differential systems with invariant straight lines of total multiplicity four, Nonlinear Anal. 68 (2008), no. 4, 681–715.

D. Schlomiuk and N. Vulpe, The full study of planar quadratic differential systems possessing a line of singularities at infinity, J. Dynam. Differential Equations 20 (2008), no. 4, 737–775.

D. Schlomiuk and N. Vulpe, Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four, Bull. Acad. Sci. Moldova Math. 56 (2008), no. 1, 27–83.

D. Schlomiuk and N. Vulpe, Global classification of the planar Lotka–Volterra differential systems according to their configurations of invariant straight lines, J. Fixed Point Theory Appl. 8 (2010), no. 1, 177–245.

D. Schlomiuk and N. Vulpe, Global topological classification of Lotka–Volterra quadratic differential systems, Electron. J. Differential Equations 2012 (2012), no. 64, 69 pp.

K.S. Sibirsky, Introduction to the algebraic theory of invariants of differential equations, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, 1988 (transl. from Russian).

V. Volterra, Leçons Sur la Théorie Mathématique de la Lutte Pour la Vie, Paris, 1931.

N. Vulpe, Polynomial bases of comitants of differential systems and their applications in qualitative theory, “Shtiintsa”, Kishinev, 1986 (in Russian).

N. Vulpe, Characterization of the finite weak singularities of quadratic systems via invariant theory, Nonlinear Anal. 74 (2011), 6553–6582.

Opublikowane

2022-04-10

Jak cytować

1.
, , & . Topological Methods in Nonlinear Analysis [online]. 10 kwiecień 2022, T. 59, nr 2A, s. 623–685. [udostępniono 22.7.2024]. DOI 10.12775/TMNA.2021.063.

Numer

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0