Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Geometric analysis of quadratic differential systems with invariant ellipses
  • Home
  • /
  • Geometric analysis of quadratic differential systems with invariant ellipses
  1. Home /
  2. Archives /
  3. Vol 59, No 2A (June 2022) /
  4. Articles

Geometric analysis of quadratic differential systems with invariant ellipses

Authors

  • Marcos Coutinho Mota https://orcid.org/0000-0002-4745-8305
  • Alex Carlucci Rezende https://orcid.org/0000-0002-1713-5337
  • Dana Schlomiuk https://orcid.org/0000-0003-4136-0208
  • Nicolae Vulpe https://orcid.org/0000-0003-3211-6369

DOI:

https://doi.org/10.12775/TMNA.2021.063

Keywords

Quadratic differential system, configuration, invariant ellipses and lines, affine invariant polynomial, group action

Abstract

Consider the class QS of all non-degenerate planar quadratic differential systems and its subclass QSE of all systems possessing an invariant ellipse. In this paper we classify the family QSE according to their geometric properties encoded in the configurations of invariant ellipses and invariant straight lines which these systems could possess. The classification, which is taken modulo the action of the group of real affine transformations and time rescaling, is given in terms of algebraic and geometric invariants and also in terms of invariant polynomials and it yields a total of 35 distinct such configurations. This classification is also an algorithm which makes it possible to verify for any given real quadratic differential system if it has invariant ellipses or not and to specify its configuration of invariant ellipses and straight lines. This work will prove helpful in studying the integrability of the systems in QSE. It is also a stepping stone for studying the topological classification of this family. Since it is known that the maximum number of limit cycles occurring in systems of QSE is 1, this goal is thus not out of reach at the moment.

References

S. Abhyankar, What is the difference between a parabola and a hyperbola?, The Mathematical Intelligence 10 (1988), no. 4, 36–43.

V. Arnold, Métodes Mathématiques de la Mécanique Classique, Moscou, 1976.

J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe, Geometric Configurations of Singularities of Planar Polynomial Differential Systems – A Global Classification in the Quadratic Case, Birkhäuser, Basel, 2021, 701 pp.

V.A. Baltag, Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems, Bull. Acad. Sci. Moldova Math 2 (2003), 31–46.

V.A. Baltag and N. Vulpe, Total multiplicity of all finite critical points of the polynomial differential system. Planar nonlinear dynamical systems (Delft, 1995), Differ. Equ. Dyn. Syst. 5 (1997), 455–471.

D. Bularas, Iu. Calin, L. Timochouk amd N. Vulpe, T -comitants of quadratic systems: a study via the translation invariants, Delft University of Technology, Faculty of Technical Mathematics and Informatics, Report no. 96–90, 1996.

L. Cairó and J. Llibre, Darbouxian first integrals and invariants for real quadratic systems having an invariant conic, J. Phys. A Math. Gen. 35 (2002), 589–608.

F. Cao and J. Jiang, The classification on the global phase portraits of two-dimensional Lotka–Volterra system, J. Dynam. Differential Equations 20 (2008), no. 4, 797–830.

S. Chandrasekhar, An Introduction to the Study of Stellar Structure, University of Chicago Press, Chicago, 1939.

J. Chavarriga, H. Giacomini and J. Llibre, Uniqueness of algebraic limit cycles for quadratic systems, J. Math. Anal. Appl. 261 (2001), 85–99.

C. Christopher, J. Llibre, J. V. Pereira, Multiplicity of invariant algebraic curves in polynomial vector fields, Pacific J. Math. 229 (2007), 63–117.

G. Darboux, Mémoire sur les équations différentielles du premier ordre et du premier degré, Bull. Sci. Math. 2 (1878), 60–96; 123–144; 151–200.

T.A. Druzhkova, The algebraic integrals of a certain differential equation, Differ. Equ. 4 (1968).

J.H. Grace and A. Young, The Algebra of Invariants, Stechert, New York, 1941.

D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), 437–479.

J.P. Jouanolou, Equations de Pfaff Algébriques, Lecture Notes in Math., Vol. 708, Springer, New York, 1979.

J. Llibre and D. Schlomiuk, The geometry of quadratic differential systems with a weak focus of third order, Canad. J. Math. 56 (2004), no. 2, 310–343.

J. Llibre and X. Zhang, Darboux theory of integrability in Cn taking into account the multiplicity, J. Differential Equations 246 (2009), no. 2, 541–551.

A.J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Natl. Acad. Sci. USA 6 (1920), 410–415.

R.D.S. Oliveira, A.C. Rezende, D. Schlomiuk and N. Vulpe, Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas, Electron. J. Differential Equations 295 (2017), 122 pp.

R.D.S. Oliveira, A.C. Rezende, D. Schlomiuk and N. Vulpe, Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials, Rev. Mat. Complut. (2021), DOI: 10.1007/s13163-02100398-8.

R.D.S. Oliveira, A.C. Rezende and N. Vulpe, Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space R12 , Electron. J. Differential Equations 162 (2016), 50 pp.

R.D.S. Oliveira, D. Schlomiuk and A.M. Travaglini, Geometry and integrability of quadratic systems with invariant hyperbolas, Electron. J. Qual. Theory Differ. Equ. 6 (2021), 56 pp.

R.D.S. Oliveira, D. Schlomiuk, A.M. Travaglini and C. Valls, Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability, Electron. J. Qual. Theory Differ. Equ. (2021), 90 pp.

P.J. Olver, Classical Invariant Theory, London Math. Soc. Stud. Texts, vol. 44, Cambridge University Press, 1999.

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, J. Math. Pures Appl. (4) 1 (1885), 167–244; O euvres de Henri Poincaré, vol. 1, Gauthier–Villard, Paris, 1951, pp. 95–114.

H. Poincaré, Sur l’intégration algébrique des équations différentielles, C.R. Acad. Sci. Paris 112 (1891), 761–764.

H. Poincaré, Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré, I. Rend. Circ. Mat. Palermo 5 (1891), 169–191.

Y.-X. Qin, On the algebraic limit cycles of second degree of the differential equation , Chin. Math. Acta 8 (1996), p. 608.

J.W. Reyn, Phase portraits of a quadratic system of differential equations occurring frequently in applications, Nieuw Arch. Wisk. (4) 5 (1987), no. 2, 107–151.

J.R. Roth, Periodic small-amplitude solutions to Volterra’s problem of two conflicting populations and their application to the plasma continuity equations, J. Math. Phys. 10 (1969), 1–43.

D. Schlomiuk, Topological and polynomial invariants, moduli spaces, in classification problems of polynomial vector fields, Publ. Mat. 58 (2014), 461–496.

D. Schlomiuk, J. Guckenheimer and R. Rand, Integrability of plane quadratic vector fields, Exposition. Math. 8 (1990), no. 1, 3–25.

D. Schlomiuk and J. Pal, On the geometry in the neighborhood of infinity of quadratic differential systems with a weak focus, Qual. Theory Dyn. Syst. 2 (2001), no. 1, 1–43.

D. Schlomiuk and N. Vulpe, Planar quadratic differential systems with invariant straight lines of at least five total multiplicity, Qual. Theory Dyn. Syst. 5 (2004), 135–194.

D. Schlomiuk and N. Vulpe, Geometry of quadratic differential systems in the neighborhood of the line at infinity, J. Differential Equations 215 (2005), 357–400.

D. Schlomiuk and N. Vulpe, Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity, Rocky Mountain J. Math. 38 (2008), 1–60.

D. Schlomiuk and N. Vulpe, Planar quadratic differential systems with invariant straight lines of total multiplicity four, Nonlinear Anal. 68 (2008), no. 4, 681–715.

D. Schlomiuk and N. Vulpe, The full study of planar quadratic differential systems possessing a line of singularities at infinity, J. Dynam. Differential Equations 20 (2008), no. 4, 737–775.

D. Schlomiuk and N. Vulpe, Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four, Bull. Acad. Sci. Moldova Math. 56 (2008), no. 1, 27–83.

D. Schlomiuk and N. Vulpe, Global classification of the planar Lotka–Volterra differential systems according to their configurations of invariant straight lines, J. Fixed Point Theory Appl. 8 (2010), no. 1, 177–245.

D. Schlomiuk and N. Vulpe, Global topological classification of Lotka–Volterra quadratic differential systems, Electron. J. Differential Equations 2012 (2012), no. 64, 69 pp.

K.S. Sibirsky, Introduction to the algebraic theory of invariants of differential equations, Nonlinear Science: Theory and Applications, Manchester University Press, Manchester, 1988 (transl. from Russian).

V. Volterra, Leçons Sur la Théorie Mathématique de la Lutte Pour la Vie, Paris, 1931.

N. Vulpe, Polynomial bases of comitants of differential systems and their applications in qualitative theory, “Shtiintsa”, Kishinev, 1986 (in Russian).

N. Vulpe, Characterization of the finite weak singularities of quadratic systems via invariant theory, Nonlinear Anal. 74 (2011), 6553–6582.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-04-10

How to Cite

1.
MOTA, Marcos Coutinho, REZENDE, Alex Carlucci, SCHLOMIUK, Dana and VULPE, Nicolae. Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis. Online. 10 April 2022. Vol. 59, no. 2A, pp. 623 - 685. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2021.063.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2A (June 2022)

Section

Articles

License

Copyright (c) 2022 Marcos Coutinho Mota, Alex Carlucci Rezende, Dana Schlomiuk, Nicolae Vulpe

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop