Array
DOI:
https://doi.org/10.12775/TMNA.2020.079Słowa kluczowe
ArrayAbstrakt
ArrayBibliografia
J. Bellazzini and G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Func. Anal. 261 (2011), 2486–2507.
A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), 1279–1299.
E. Di Nezza, G. Palatucc, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.
M. Du, L. Tian and J. Wang, Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), 617–653.
P. Felmer and Y. Wang, Radial Symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math. 16 (2014), 1350023.
S. Goyal and K. Sreenadh, Existence of multiple solutions of p-fractional Laplace operator with sign-changing weight function, Adv. Nonlinear Anal. 4 (2015), 37–58.
S. Goyal and K. Sreenadh, Nehari manifold for non-local elliptic operator with concaveconvex nonlinearities and sign-changing weight functions, Proc. Indian Acad. Sci. (Math. Sci.) 125 (2015), 545–558.
L. Gu, X. Zeng and H. Zhou, Eigenvalue problem for a p-Laplacian equation with trapping potential, Nonlinear Anal. 148 (2017), 212–227.
Y. Guo, T. Liu and J. Nie, Solutions for fractional operator problem via local Pohozaev identities, arXiv:1904.08316vl (2019), 32 pp.
Y. Guo and R. Seiringer, On the mass concentration for Bose–Einstein condensates with attractive interactions, Lett. Math. Phys. 104 (2014), 141–156.
Q. He and W. Long, The concentration of solutions to a fractional Schrödinger equation, Z. Angew. Math. Phys. 67 (2016), 1–19.
A. Iannizzotto and M. Squassina, Weyl-type laws for fractional p-eigenvalue problems, Asymptot. Anal. 88 (2014), 233–245.
L. Jeanjean and T. Luo, Sharp nonexistence results of prescribed L2 -norm solutions for some class of Schrödinger–Poisson and quasi-linear equations, Z. Angew. Math. Phys. 64 (2013), 937–954.
L. Jeanjean, T. Luo and Z. Wang, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Differential Equations 259 (2015), 3894–3928.
R. Lehrer, L.A. Maia and M. Squassina, On fractional p-Laplacian problems with weight, Differential Integral Equ ations 28 (2015), 15–28.
G. Li and H. Ye, On the concentration phenomenon of L2 -subcritical constrained minimizers for a class of Kirchhoff equations with potentials, J. Differential Equations 266 (2019), 7101–7123.
E. Lindgren and P. Lindqvist, Fractional eigenvalue, Calc. Var. Partial Differential Equations 49 (2014), 795–826.
P. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109–145.
M. Liu and Z. Tang, Multiplicity and concentration of solutions for a fractional Schrödinger equation via Nehari method and pseudo-index theory, J. Math. Phys. 60 (2019), 053502.
W. Long, S. Yan and J. Yang, A critical elliptic problem involving fractional Laplacian operator in domains with shrinking holes, J. Differential Equations 267 (2019), 4117–4147.
Q. Lou, L. Zhang and G. Dai, Existence and concentration of positive solutions for non-autonomous Schrödinger–Poisson systems, Complex Var. Elliptic Equ. 65 (2020), 1672–1697.
K. Perera, M. Squassina and Y. Yang, A note on the Dancer–Fuc̆ı́k spectra of the fractional p-Laplacian and Laplacian operators, Adv. Nonlinear Anal. 4 (2015), 13–23.
M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567–576.
H. Ye, The existence and the concentration behavior of normalized solutions for the L2 critical Schrödinger–Poisson system, Comput. Math. Appl. 74 (2017), 266–280.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2021 Array
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0