Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The existence of constrained minimizers related to fractional $p$-Laplacian equations
  • Home
  • /
  • The existence of constrained minimizers related to fractional $p$-Laplacian equations
  1. Home /
  2. Archives /
  3. Vol 58, No 2 (December 2021) /
  4. Articles

The existence of constrained minimizers related to fractional $p$-Laplacian equations

Authors

  • Qingjun Lou
  • Yupeng Qin
  • Fang Liu

DOI:

https://doi.org/10.12775/TMNA.2020.079

Keywords

Fractional $p$-Laplacian equations, constrained minimizers, $L^{p}$-norm, existence

Abstract

The existence of the solutions with prescribed $L^{p}$-norm for a fractional $p$-Laplacian equation is investigated in this paper. The obtained result is suitable for all the order of the derivative $0< s< 1$ and $p> 1$, which extends the previous results for $s=1$ or $p=2$. In particular, to the best of our knowledge, as the $L^{p}$-subcritical or $L^{p}$-critical constrained minimization problem for fractional $p$-Laplacian equation, the critical exponent $({pN+p^{2}s})/{N}$ is properly established for the first time. On one hand, using Lions Vanishing Lemma and Brézis-Lieb Lemma, the compactness of minimizing sequences for the related constrained minimization problem is derived, then based on which the existence of constrained minimizers is achieved. On the other hand, the existence of weak solution and the nonexistence result are also provided.

References

J. Bellazzini and G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Func. Anal. 261 (2011), 2486–2507.

A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), 1279–1299.

E. Di Nezza, G. Palatucc, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.

M. Du, L. Tian and J. Wang, Existence of normalized solutions for nonlinear fractional Schrödinger equations with trapping potentials, Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), 617–653.

P. Felmer and Y. Wang, Radial Symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math. 16 (2014), 1350023.

S. Goyal and K. Sreenadh, Existence of multiple solutions of p-fractional Laplace operator with sign-changing weight function, Adv. Nonlinear Anal. 4 (2015), 37–58.

S. Goyal and K. Sreenadh, Nehari manifold for non-local elliptic operator with concaveconvex nonlinearities and sign-changing weight functions, Proc. Indian Acad. Sci. (Math. Sci.) 125 (2015), 545–558.

L. Gu, X. Zeng and H. Zhou, Eigenvalue problem for a p-Laplacian equation with trapping potential, Nonlinear Anal. 148 (2017), 212–227.

Y. Guo, T. Liu and J. Nie, Solutions for fractional operator problem via local Pohozaev identities, arXiv:1904.08316vl (2019), 32 pp.

Y. Guo and R. Seiringer, On the mass concentration for Bose–Einstein condensates with attractive interactions, Lett. Math. Phys. 104 (2014), 141–156.

Q. He and W. Long, The concentration of solutions to a fractional Schrödinger equation, Z. Angew. Math. Phys. 67 (2016), 1–19.

A. Iannizzotto and M. Squassina, Weyl-type laws for fractional p-eigenvalue problems, Asymptot. Anal. 88 (2014), 233–245.

L. Jeanjean and T. Luo, Sharp nonexistence results of prescribed L2 -norm solutions for some class of Schrödinger–Poisson and quasi-linear equations, Z. Angew. Math. Phys. 64 (2013), 937–954.

L. Jeanjean, T. Luo and Z. Wang, Multiple normalized solutions for quasi-linear Schrödinger equations, J. Differential Equations 259 (2015), 3894–3928.

R. Lehrer, L.A. Maia and M. Squassina, On fractional p-Laplacian problems with weight, Differential Integral Equ ations 28 (2015), 15–28.

G. Li and H. Ye, On the concentration phenomenon of L2 -subcritical constrained minimizers for a class of Kirchhoff equations with potentials, J. Differential Equations 266 (2019), 7101–7123.

E. Lindgren and P. Lindqvist, Fractional eigenvalue, Calc. Var. Partial Differential Equations 49 (2014), 795–826.

P. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109–145.

M. Liu and Z. Tang, Multiplicity and concentration of solutions for a fractional Schrödinger equation via Nehari method and pseudo-index theory, J. Math. Phys. 60 (2019), 053502.

W. Long, S. Yan and J. Yang, A critical elliptic problem involving fractional Laplacian operator in domains with shrinking holes, J. Differential Equations 267 (2019), 4117–4147.

Q. Lou, L. Zhang and G. Dai, Existence and concentration of positive solutions for non-autonomous Schrödinger–Poisson systems, Complex Var. Elliptic Equ. 65 (2020), 1672–1697.

K. Perera, M. Squassina and Y. Yang, A note on the Dancer–Fuc̆ı́k spectra of the fractional p-Laplacian and Laplacian operators, Adv. Nonlinear Anal. 4 (2015), 13–23.

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567–576.

H. Ye, The existence and the concentration behavior of normalized solutions for the L2 critical Schrödinger–Poisson system, Comput. Math. Appl. 74 (2017), 266–280.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-12-05

How to Cite

1.
LOU, Qingjun, QIN, Yupeng and LIU, Fang. The existence of constrained minimizers related to fractional $p$-Laplacian equations. Topological Methods in Nonlinear Analysis. Online. 5 December 2021. Vol. 58, no. 2, pp. 657 - 676. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2020.079.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 2 (December 2021)

Section

Articles

License

Copyright (c) 2021 Qingjun Lou, Yupeng Qin, Fang Liu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop