Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Linearization of topologically Anosov homeomorphisms of non compact surfaces of genus zero and finite type
  • Strona domowa
  • /
  • Linearization of topologically Anosov homeomorphisms of non compact surfaces of genus zero and finite type
  1. Strona domowa /
  2. Archiwum /
  3. Vol 58, No 1 (September 2021) /
  4. Articles

Linearization of topologically Anosov homeomorphisms of non compact surfaces of genus zero and finite type

Autor

  • Gonzalo Cousillas https://orcid.org/0000-0002-2386-6937
  • Jorge Groisman https://orcid.org/0000-0002-3448-2955
  • Juliana Xavier

DOI:

https://doi.org/10.12775/TMNA.2021.002

Słowa kluczowe

Topologically expansive homeomorphism, topological shadowing property, Topologically Anosov plane homeomorphism

Abstrakt

We study the dynamics of {\it topologically Anosov} homeomorphisms of non-compact surfaces. In the case of surfaces of genus zero and finite type, we classify them. We prove that if $f\colon S \to S$, is a Topologically Anosov homeomorphism where $S$ is a non-compact surface of genus zero and finite type, then $S= \mathbb{R}^2$ and $f$ is conjugate to a homothety or reverse homothety (depending on wether $f$ preserves or reverses orientation). A weaker version of this result was conjectured in \cite{cgx}.

Bibliografia

N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland Math. Library, vol. 52, 1994.

M. Barge and B. Martensen, Classification of expansive attractors on surfaces, Ergodic Theory Dynam. Systems 55 (2011), no. 6, 1619–1639.

L.E.J. Brouwer, Beweis des ebenen translationssatzes, Math. Ann. 72 (1912), 37–54.

B.F. Bryant, Unstable Self-Homeomorphisms of a Compact Space, Ph.D. thesis, Vanderbilt University, 1954.

G. Cousillas, A fixed point theorem for plane homeomorphisms with the topological shadowing property, preprint. arXiv:1804.02244

G. Cousillas, J. Groisman and J. Xavier, Topologically Anosov plane homeomorphisms, Topol. Methods Nonlinear Anal. 54 (2019), 371–382.

E. Coven and M. Keane, Every compact space that supports a positively expansive homeomorphism is finite, IMS Lecture Notes Monograph Series, vol. 48, 2006, pp. 304–305.

T. Das, K. Lee, D. Richeson and J. Wiseman, Topologically Anosov plane homeomorphisms, Topology Appl. 160 (2013), 149–158.

A. Gasull, J. Groisman and F. Mañosas, Linearization of planar homeomorphisms, Topol. Methods Nonlinear Anal. 48 (2016), no. 2, 493–506.

J. Groisman and J. Vieitez, On transitive expansive homeomorphisms of the plane, Topology Appl. 178 (2014), 125–135.

B. Kerékjártó, Sur le caractère topologique des representations conformes, Acad. Sci. Paris 198 (1934), 317–320.

B. Kerékjártó, Topologische Charakterisierung der linearen, Acta Litt. Acad. Sei. Szeged. 6 (1934), 235–262.

K. Lee, N.-T. Nguyen and Y. Yang, Topological stability and spectral decomposition for homeomorphisms on oncompact spaces, Discrete Contin. Dyn. Syst. 38 (2018), 2487–2503.

J. Lewowicz, Dinámica de los Homeomorphismos Expansivos, Monografias del IMCA, vol. 36, 2003.

C. Mouron, Tree-like continua do not admit expansive homeomorphisms, Proc. Amer. Math. Soc. 130 (2002), no. 11, 3409–3413.

C. Mouron, Expansive homeomorphisms and plane separating continua, Topology Appl. 155 (2008), no. 9, 1000–1012.

S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2021-09-12

Jak cytować

1.
COUSILLAS, Gonzalo, GROISMAN, Jorge & XAVIER, Juliana. Linearization of topologically Anosov homeomorphisms of non compact surfaces of genus zero and finite type. Topological Methods in Nonlinear Analysis [online]. 12 wrzesień 2021, T. 58, nr 1, s. 323–333. [udostępniono 28.12.2025]. DOI 10.12775/TMNA.2021.002.
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 58, No 1 (September 2021)

Dział

Articles

Licencja

Prawa autorskie (c) 2021 Topological Methods in Nonlinear Analysis

Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa