Topological Methods in Nonlinear Analysis Volume 58, No. 1, 2021, 323–333 DOI: 10.12775/TMNA.2021.002

© 2021 Juliusz Schauder Centre for Nonlinear Studies

LINEARIZATION OF TOPOLOGICALLY ANOSOV HOMEOMORPHISMS OF NON COMPACT SURFACES OF GENUS ZERO AND FINITE TYPE

GONZALO COUSILLAS — JORGE GROISMAN — JULIANA XAVIER

ABSTRACT. We study the dynamics of topologically Anosov homeomorphisms of non-compact surfaces. In the case of surfaces of genus zero and finite type, we classify them. We prove that if $f\colon S\to S$, is a Topologically Anosov homeomorphism where S is a non-compact surface of genus zero and finite type, then $S=\mathbb{R}^2$ and f is conjugate to a homothety or reverse homothety (depending on wether f preserves or reverses orientation). A weaker version of this result was conjectured in [6].

1. Introduction

A homeomorphism $f \colon M \to M$ of the metric space M to itself is called expansive if there exists $\alpha > 0$ such that given $x, y \in M$, $x \neq y$, then $d(f^n(x), f^n(y)) > \alpha$ for some $n \in \mathbb{Z}$. If $\delta > 0$, a δ -pseudo-orbit for f is a sequence $(x_n)_{n \in \mathbb{Z}}$ such that $d(f(x_n), x_{n+1}) < \delta$ for all $n \in \mathbb{Z}$. If $\varepsilon > 0$, we say that the orbit of x ε -shadows a given pseudo-orbit $(x_n)_{n \in \mathbb{Z}}$ if $d(x_n, f^n(x)) < \varepsilon$ for all $n \in \mathbb{Z}$. Finally, we say that f has the shadowing property if for each $\varepsilon > 0$ there exists $\delta > 0$ such that every δ -pseudo-orbit is ε -shadowed by an orbit of f. Roughly speaking, expansivity means that every point has a distinctive dynamical behavior, and systems

 $^{2020\ \}textit{Mathematics Subject Classification}. \ \text{Primary: 37E30; Secondary: 37B20}.$

Key words and phrases. Topologically expansive homeomorphism; topological shadowing property; Topologically Anosov plane homeomorphism.