Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Spectral decomposition and stability of mild expansive systems
  • Home
  • /
  • Spectral decomposition and stability of mild expansive systems
  1. Home /
  2. Archives /
  3. Vol 56, No 1 (September 2020) /
  4. Articles

Spectral decomposition and stability of mild expansive systems

Authors

  • Huy-Tien Le
  • Keonhee Lee https://orcid.org/0000-0002-3513-256X
  • Ngocthach Nguyen https://orcid.org/0000-0003-4169-8890

Keywords

Mild expansiveness, mild topological stability, $\Omega$-stability, shadowing property, spectral decomposition

Abstract

In this paper we introduce another type of expansiveness, called mild expansiveness, for homeomorphisms on compact metric spaces, and present a topological version of the spectral decomposition theorem by Smale \cite{Sm} and Bowen \cite{Bo}. Moreover we study the topological stability of mild expansive homeomorphisms, and characterize the mild expansive diffeomorphisms on compact smooth manifolds using the notion of $\Omega$-stability.

References

N. Aoki, On homeomorphisms with pseudo-orbit tracing property, Tokyo J. Math. 6 (1983), 329–334.

N. Aoki and K. Hiraide, Topological theory of dynamical systems, Recent Advances, vol. 52, North Holland Math. Library, North Holland, 1994.

A. Arbieto, Periodic orbits and expansiveness, Math. Z. 269 (2011), 801–807.

A. Artigue, M.J. Pacifico and J. Vieitez, N -expansive homeomorphisms on surfaces, Commun. Contemp.y Math. 19 (2017), 1650040, 18 pp.

R. Bowen, Equilibrium States and Ergodic Theory of Axiom A Diffeomorphisms, Lecture Notes in Math., vol. 470, Springer–Verlag, 1975.

B. Carvalho and W. Cordeiro, N -expansive homeomorphisms with the shadowing property, J. Differential Equations 261 (2016), 3734–3755.

A. Dankner, On Smale’s Axiom A dynamical systems, Ann. of Math. (2) 107 (1978), 517–553.

T. Das, K. Lee, D. Richeson and J. Wiseman, Spectral decomposition for topologically Anosov homeomorphisms on noncompact and non-metrizable spaces , Topology Appl. 160 (2013), 149–158.

J. Franks, Necessary condition for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301–308.

H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math. 45 (1993), 576–598.

K. Lee and C.A. Morales, Topological stability and pseudo-orbit tracing property for expansive measures, J. Differential Equations 262 (2017), 3467–3487.

K. Lee, N. Nguyen and Y. Yang, Topological stability and spectral decomposition for homeomorphisms on noncompact spaces, Discrete Contin. Dyn. Syst. 38 (2018), 2487–2503.

J. Li and R. Zhang, Level of generalized expansiveness, J. Dynam. Differential Equations 29 (2017), 877–894.

C.A. Morales, A generalization of expansivity, Discrete Contin. Dyn. Syst. 32 (2012), 293–301.

C.A. Morales and V.F. Sirvent, Expansive measures, IMPA Mathematical Publications, 2013.

P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems, Discrete Contin. Dyn. Syst. 20 (2008), 1039–1056.

S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.

P. Walters, On the pseudo-orbit tracing property and its relationship to stability, Lecture Notes in Math., vol. 668, Springer, 1978, pp. 231–244.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2020-08-29

How to Cite

1.
LE, Huy-Tien, LEE, Keonhee and NGUYEN, Ngocthach. Spectral decomposition and stability of mild expansive systems. Topological Methods in Nonlinear Analysis. Online. 29 August 2020. Vol. 56, no. 1, pp. 63 - 81. [Accessed 6 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 56, No 1 (September 2020)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop