Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Conley index of isolated equilibria
  • Home
  • /
  • Conley index of isolated equilibria
  1. Home /
  2. Archives /
  3. Vol 38, No 2 (December 2011) /
  4. Articles

Conley index of isolated equilibria

Authors

  • Martin Kell

Keywords

37B30, 58E05

Abstract

In this paper we study stable isolated invariant sets and show that the zeroth singular homology of the Conley index characterizes stability completely. Furthermore, we investigate isolated mountain pass points of gradient-like semiflows introduced by Hofer in \cite{4} and show that the first singular homology characterizes them completely. The result of the last section shows that for reaction-diffusion equations $$ \align u_{t}-\Delta u& = f(u),\\ u_{|\partial\Omega}& = 0, \endalign $$ the Conley index of isolated mountain pass points is equal to $\Sigma^{1}$ - the pointed $1$-sphere. Finally we generalize the result of {\cite{1, Proposition 3.3}} about mountain pass points to Alexander-Spanier cohomology.

Downloads

  • FULL TEXT

Published

2011-04-23

How to Cite

1.
KELL, Martin. Conley index of isolated equilibria. Topological Methods in Nonlinear Analysis. Online. 23 April 2011. Vol. 38, no. 2, pp. 373 - 393. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 38, No 2 (December 2011)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop