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CONLEY INDEX OF ISOLATED EQUILIBRIA

Martin Kell

Abstract. In this paper we study stable isolated invariant sets and show
that the zeroth singular homology of the Conley index characterizes stabil-

ity completely. Furthermore, we investigate isolated mountain pass points

of gradient-like semiflows introduced by Hofer in [4] and show that the first
singular homology characterizes them completely.

The result of the last section shows that for reaction-diffusion equations

ut −∆u = f(u),

u|∂Ω = 0,

the Conley index of isolated mountain pass points is equal to Σ1 – the
pointed 1-sphere. Finally we generalize the result of [1, Proposition 3.3]

about mountain pass points to Alexander–Spanier cohomology.

1. Introduction

Some chemical reactions are described by so called reaction diffusion equa-
tions, i.e. (non-linear) parabolic partial differential equations like

ut −∆u = f(u),

u|∂Ω = 0,
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for some Ω ⊂ Rn with “nice” boundary. This equation induces a semiflow whose
equilibria are solutions of the non-linear partial differential equation

−∆u = f(u),

u|∂Ω = 0.

Frequently these equilibria are isolated, that is there is no other equilibrium in
a small neighbourhood of a solution. A mathematical tool to describe equilibria is
the Conley homotopy index. This index has the advantage that it stays constant
under perturbations of the equation.

We are going to investigate two classes of isolated equilibria: stable equilibria
and “mountain pass” equilibria. If an isolated equilibrium u0 attracts a small
neighbourhood we call it stable. In particular this means that there is no u

close to u0 which leaves that neighbourhood. In connection with critical point
theory we will show that the frequently used statement “because the exit set is
non-empty, H0 is trivial” is true.

Mountain pass points were defined the first time by Hofer in [4] and the
topological degree was calculated in [5]. A complete characterization via critical
groups was given in [1]. All these calculations use the energy functional and its
Palais–Smale condition.

Here we use a given flow and its energy function directly. Sometimes this
will lead to simpler and/or more general result. We show that isolated stable
equilibria are completely characterized by the zeroth homology index and isolated
mountain pass points by the first homology index. Finally we will compute the
homotopy index of mountain pass points for reaction diffusion equations.

2. Preliminaries

2.1. Connectedness of topological spaces. In this section we will state
some simple result about path-connectedness and deformations of topological
spaces. For precise definitions see [8] or [2].

Let X be a topological space. For each x ∈ X we will denote by PCx the
path component containing x, i.e. y ∈ PCx if there is some continuous map
f : [0, 1] → X such that f(0) = x and f(1) = y. In case of several spaces we will
use PCX

x .
If ∅ 6= A ⊂ X then the quotient space X/A is defined by identifying all points

of A to some point [A]. If A = ∅ then X/A is the topological space Xq{p} with
product topology for some p /∈ X. Both quotient spaces are treated as pointed
space with base-point [A] (resp. p). In both cases the quotient map q:X → X/A

is continuous.

Lemma 2.1. If A ∩ PCx 6= ∅ for all x ∈ X then X/A is path-connected.
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Proof. We will show that each [x] ∈ X/A is path-connected to [A]. Let
x ∈ [x] ⊂ X be some representative in [x]. Because A∩PCX

x is not empty there
is a continuous map fx: [0, 1] → X with f(0) = x and f(1) ∈ A.

Define f̃ : [0, 1] → X/A as f̃ := q ◦ f . This map is continuous because f and
q are. And

PCX/A
[x] = PCX/A

[A] ,

because f̃(0) = [x] and f̃(1) = [A]. Since [x] was arbitrary

PCX/A
[x] = PCX/A

[A] = PCX/A
[y]

for all x, y ∈ X, so that X/A = PCX/A
[A] is path-connected. �

Let X and Y be homotopy equivalent spaces. It can be easily shown that
if X is path-connected, so is Y . Thus we say that the homotopy class [X] is
path-connected if some representative X is path-connected.

A strong deformation retract of X onto a subset A is a continuous map
D:X × [0, 1] → X with D(x, 0) = x for all x ∈ X and D(t, a) = a for all (t, a) ∈
[0, 1] × A. In particular we see that this does defines a homotopy equivalence
and path-connectedness of X implies that of A. Furthermore, we can show the
following.

Lemma 2.2. Write x ∼pc y if x and y are in the same path-component of X.
Let

X =
⋃

[x]∈X/∼pc

PCx,

A ⊂ X be a subset of X and D:X × [0, 1] → X be a strong deformation retract
of X onto A. Then

A =
⋃

[x]∈X/∼pc

D(PCx, 1)

is the decomposition of A into path-components.

Proof. According to the previous statement D(PCx, 1) ⊂ A is path-con-
nected and the union is equal to A. It remains to show that D(PCx, 1) is disjoint
from D(PCy, 1) if [x] 6= [y] ∈ X/∼pc.

Suppose this is not the case for some x, y ∈ X with [x] 6= [y]. Then there is
a path f : [0, 1] → A with f(0) = x and f(1) = y. Since f([0, 1]) ⊂ A ⊂ X, this
is also a path in X and therefore [x] = [y] in X which is a contradiction. �

2.2. Homology. Finally we want to state a theorem about the first homol-
ogy of the pair (X, X \ {x0}) for x0 ∈ X. This result will play a crucial role
in the proof of the mountain pass characterization via the homotopy index. We
assume that the reader is familiar with concepts of relative singular homology
as given in [2].
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All maps in the following are assumed to be continuous. A map σ:∆n → X

denotes a singular n-simplex, i.e. a continuous map from an n-simplex ∆n into X.
The sets Ci(X, A) and Hi(X, A) (Ci(X) and Hi(X) in case of A = ∅) will denote
the set of singular i-chains and respectively the i-th singular homology of the
pair A ⊂ X with coefficient in the (non-trivial) group G.

Theorem 2.3. Let X be Hausdorff and x0 ∈ X. Suppose there is an open
neighbourhood U ⊂ X of x0 such that for every α: [0, 1] → U with α(0), α(1) 6= x0

there is a singular 2-chain β ∈ C2(X) with

(a) ∂β = β0 − β1 + β2,
(b) β1, β2 ∈ C1(X \ {x0}),
(c) β0 = σα with σα:∆1 → X the induced singular 1-chains of α.

Then H1(X, X \ {x0}) = 0.

Proof. Let σ be a relative 1-cycle, its homology class is denoted by [σ].
Using the lemma below we can assume that σ is generated by finitely many
1-simplices with endpoints unequal to x0. Because the represented homology
class in such a case is the sum of the homology classes of the generating 1-
simplices times a coefficient it suffices to show that each 1-simplex α with ∂α ∈
C0(X \ {x0}) represents the trivial relative homology class in H1(X, X \ {x0}).
This is the case if there is a β ∈ C2(X) and a γ ∈ C1(X \ {x0}) such that
α = ∂β + γ.

Let gα: [0, 1] → X be the associated path of α, i.e. gσ(t) = α(t, 1− t).

Case 1. gα([0, 1]) ⊂ X \ {x0}. Then α ∈ C1(X \ {x0}) so that we can choose
γ = α and β = 0 and therefore [α] is trivial in H1(X, X \ {x0}).

Case 2. gα([0, 1]) ⊂ U , where U is the neighbourhood from the assumption
of the theorem. Then there is a singular 2-chain β ∈ C2(X) with

∂β = β0 − β1 + β2

such that β0 = α and βi ∈ C1(X \ {x0}) for i = 1, 2. Now choose γ = β1 − β2 ∈
C1(X \ {x0}) then

∂β + γ = (β0 − β1 + β2) + β1 − β2 = α.

Therefore [α] is trivial in H1(X, X \ {x0}).
Case 3. gα arbitrary. We claim that there is a decomposition {0 = t0 <

. . . < t2k+1 = 1} such that for gi = gα|[ti−1,ti]

g2i+1: [t2i, t2i+1] → X \ {x0}, g2i: [t2i−1, t2i] → U.

Assuming this, the cases 1 and 2 apply to the associated 1-simplices σg2i+1 and,
resp. σg2i

, so that [σgi
] = 0 in H1(X, X \ {x0}). Therefore

[α] = [σg0 ] + . . . + [σg2k+1 ] = 0 + . . . + 0 = 0,
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i.e. [α] is trivial in H1(X, X \ {x0}).
The decomposition of the path can be achieved by noticing that both X\{x0}

and U are open. Because X is Hausdorff we can find an open neighbourhood
V ⊂ U of x0 such that g(0), g(1) /∈ V . Continuity of g implies A = g−1(X \{x0})
and B = g−1(V ) are disjoint unions of open intervals in [0, 1]. Because [0, 1]
is compact finitely many of these intervals suffice to cover [0, 1] and we can
assume no interval is completely contained in another one. This implies that
if two intervals intersect then one belongs to A and the other to B. Because
g(0), g(1) /∈ V the first and last interval must be in A. Splitting g at some
arbitrary t in the intersection of two neighbouring intervals we get the required
decomposition. �

Lemma 2.4. Let σ ∈ C1(X) be a relative 1-cycle, i.e. ∂σ ∈ C1(X \ {x0}).
Then the relative homology class of σ can be represented by a relative 1-cycle σ̃

such that

σ̃ =
k∑

i=1

diσ̃i

where di ∈ G and σ̃i:∆1 → X is a 1-simplex with σ̃i(0), σ̃i(1) 6= x0.

Proof. For distinct singular 1-simplices σi and coefficients ci ∈ G \ {0} we
have

σ =
l∑

i=1

ciσi + σ̃

where σ̃ is a 1-cycle with the required property and x0 ∈ |∂σi| for each σi. The
constant 1-simplex σi ≡ x0 is an n-boundary hence σ and σ− ciσi represent the
same relative homology class. So we assume that all σi 6≡ x0.

If ∂σi = x0 − x0 = 0 then we can split the simplex into σ1
i + σ2

i such that
σ1

i (0, 1) = σ2
i (1, 0) 6= x0. Then σ and σ − ciσi + ciσ

1
i + ciσ

2
i represent the same

homology class, i.e. we can replace the 1-cycle by two 1-simplices which are not
1-cycles.

If ρ is a 1-simplex denote by ρ− the reversed 1-simplex, i.e. ρ−(t, 1 − t) =
ρ(1 − t, t). Because ρ + ρ− represents the trivial homology class in H1(X) and
H1(X, X \{x0}) for every 1-simplex ρ, we can replace each ciσi by −ciσ

−
i . Thus

we can assume that ∂σi = x0 − xi for all σi, i.e.

∂σ =
l∑

i=1

cix0 −
l∑

i=1

cixi + ∂σ̃.

Since σ is a relative 1-cycle, i.e. x0 /∈ |∂σ|, we must have
∑l

i=1 ci = 0. And
because ci 6= 0 it is obvious that l 6= 1. If l = 0 then we are done. So assume
l > 1.
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Then σ−1 +σ2 represent a path from x1 to x2 whose 1-simplex will be denoted
by σ̃1 such that ∂σ̃1 = x1−x2. Because σ1+σ−1 represent the trivial homology, σ

and σ′ = σ+c1(σ−1 +σ2− σ̃1)−c1(σ1+σ−1 ) represent the same relative homology
class. σ′ has the following form

σ′ = (c1 + c2)σ2 +
l∑

i=3

ciσi + σ̃′

where σ̃′ = σ̃ − c1σ̃1 has the required form. After renaming we see that l was
reduced by at least 1. So after at most l − 2 further steps we will be done. �

3. Conley index

In this section we are going to show that path-connectedness of the Con-
ley homotopy index of an isolated invariant set characterizes its the stability.
We assume the reader is familiar with the Conley index for semiflows on (not
necessarily locally compact) metric spaces as given in [6], [7].

A semiflow is a continuous map π:D → X where X is a metric space and
D ⊂ R+ ×X the domain with xπ0 = x and xπ(t + s) = (xπt)πs whenever this
is defined. Here we are going to use xπt for π(t, x) if (t, x) ∈ D.

An isolated invariant set (for π) is a compact set S ⊂ X which admits a closed
isolating neighbourhood N such that the maximal invariant set A(N) is K. The
sets A+(N) and A−(N) denote the positive and negative invariant sets in N , in
particular we have A(N) = A+(N) ∩ A−(N). The set ω(x) is defined as usual
and for a full left solution σ: R− → X, i.e. σ(s)πt = σ(s + t) for t ≥ 0 and
s + t ≤ 0, α(σ) is defined as the set of limit points for sequence (σ(tn))n∈N with
tn → −∞. If π is a flow then α(σ) = α(σ(0)) for the usual definition of α(x).

We will use Rybakowski’s strongly π-admissibility (see [6, (H1), (H2)]) for
certain bounded and closed N ⊂ X, this roughly says for longer and longer or-
bits inside of N the sequence of endpoints has a convergent subsequence. Let
S be the set of isolated invariant sets admitting a strongly π-admissible isolat-
ing neighbourhood and let N (K) be the set the strongly π-admissible isolating
neighbourhoods of K.

For each K in S there is a well-defined homotopy index h(K). This index is
the homotopy type quotient space (B/B−, [B−]) of a special pair (B,B−) where
B is a strongly π-admissible isolating block and B− the exit set, i.e. all points
on the boundary of B either leave B or enter its interior immediately and there
are no solutions σ: (−ε, ε) → B with σ(0) ∈ ∂B. Such a set always exists if
N ∈ N (K) (see [6, Section 2] for definition and existence).

Now we are able to prove several results concerning stability of isolated in-
variant sets.
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Theorem 3.1. Let X be locally path-connected and K ∈ S be a path-con-
nected invariant set. Then, for N ∈ N (K),

h(K) is path-connected ⇔ K 6= A−(N) ⇔ H0(h(K)) = 0.

Furthermore, if A−(N) = K, i.e. K is stable, then H0(h(K)) = G.

Proof. h(K) = [Y, y0] is path-connected if and only if H0(Y, y0) = 0, so we
only need to show the first equivalence.

Let N1, N2 ∈ N (K) be any admissible neighbourhoods. If y1 ∈ A−(N1) \K

then there is a full left solution σ in N through y1, i.e. σ: R− → N with σ(0) =
y1. Since α(σ) ⊂ K and K ⊂ intN2 there is a neighbourhood U ⊂ N2 of
some y−∞ ∈ α(σ) such that σ(−T ) ∈ U . Because σ(R−) ⊂ A−(N1) \ K and
σ(−T ) /∈ K, σ(−T ) ∈ A−(N2) \K, i.e.

A−(N1) \K 6= ∅ ⇔ A−(N2) \K 6= ∅.

This means we only need to show the result for one isolating neighbourhood.

So let N ∈ N (K) be arbitrary. We use the fact that the semiflow π gives us
a natural path in N from x ∈ N to xπt ∈ N if (t, x) ∈ D and xπ[0, t] ⊂ N .

If x ∈ A+(N) then xπ[0, t] ⊂ N for all t ≥ 0. Hence x and xπt are path-
connected for all t ≥ 0.

Because ω(x) ⊂ K ⊂ intN and X is locally path-connected there is a path-
connected neighbourhood U ⊂ N for some x∞ ∈ ω(x) (ω(x) 6= ∅ because N is
strongly π-admissible). Since xπtn → x∞ for some tn → ∞ there is a tN > 0
such that xπtN ∈ U . Therefore there is a path in U from x∞ to xπtN , i.e. x is
path-connected to x∞ ∈ K.

If y ∈ A−(N) then there is a full left solution σ: R− → N through y and
α(σ) ⊂ K holds, which is non-empty by strong π-admissibility. So again, there
is a path-connected neighbourhood V ⊂ N for some y−∞ ∈ α(σ) and a T > 0
such that σ(−T ) ∈ V . Hence y is path-connected to y−∞ ∈ K via the paths
from y = σ(0) to σ(−T ) and from σ(−T ) to y−∞.

Now let B ⊂ N be a strongly π-admissible, isolating block. Then for all
x ∈ B \A+(B) there is a t(x) ∈ R+ such that xπ[0, t(x)] ⊂ B and xπt(x) ∈ B−.
In particular x is path-connected to xπt(x) ∈ B−.

If A−(N) = K then there is an isolating block B such that B− = ∅ (see [7,
I-5.5]). Therefore B = A+(B). Since K is path-connected and any x ∈ A+(B)
is path-connected to some k ∈ K, B itself is path-connected, i.e.

H0(h(K)) = H0(B, ∅) = G.
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If A−(N) 6= K then A−(B) 6= K and every x ∈ B \ A+(B) is connected
to some x̃ ∈ B−. Furthermore there is a y ∈ A−(B) \ K such that y is path-
connected to a k ∈ K and ỹ ∈ B−. Hence for all x ∈ B

PCB
x ∩B− 6= ∅.

Using Lemma 2.1 we conclude that B/B− is path-connected and because B is
an isolating block

H0(h(K)) = H0(B/B−, [B−]) = 0. �

If ω(x) and α(σ) consist of a single point we can construct a path from x to
x∞ ∈ ω(x) resp. from σ(0) to y−∞ ∈ α(σ). This way we can drop the assumption
that X is locally path-connected.

Lemma 3.2. Let K ∈ S and N ∈ N (K). Suppose for every x ∈ A+(N) \K

|ω(x)| = 1. If A−(N) = K and K is path-connected then h(K) is not path-
connected and

H0(h(K)) = G.

If A−(N) 6= K and for every path-component C of K there is a full left solution
σ through some y ∈ A−(N) \K with |α(σ)| = 1 and α(σ) ⊂ C. Then h(K) is
path-connected and

H0(h(K)) = 0.

Proof. Similarly to the previous lemma this statement does not depend on
the chosen isolating neighbourhood.

We will only construct the paths from x ∈ A+(N) to K and from σ(0) with
|α(σ)| = 1 to K. The rest of the proof is the same as the previous one. We
define the functions f, g: [0, 1] → N as follows

f(t) =

{
xπ

τ

1− τ
τ ∈ [0, 1),

x∞ τ = 1, x∞ ∈ ω(x),

g(t) =

 σ

(
−τ

1− τ

)
τ ∈ [0, 1),

y−∞ τ = 1, y−∞ ∈ α(y).

Since τ/(1− τ) is continuous for τ ∈ [0, 1), f and g are continuous in [0, 1).
Let 1 6= τn → 1, then tn := τn/(1− τn) → ∞. The sets {xπtn}n∈N and

{σ(−tn) = σ(−2tn)πtn}n∈N are precompact and every cluster point is in ω(x) =
{x∞} ⊂ K resp. α(σ) = {y−∞} ⊂ K. Therefore f(τn) → x∞ and g(τn) → y−∞,
i.e. f and g are continuous in [0, 1] with f(1), g(1) ∈ K. �
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Theorem 3.3. Let {x0} = K ∈ S and N ∈ N (K). Then

A−(N) = K ⇔ h(K) = Σ0 ⇔ H0(h(K)) 6= 0 ⇔ H0(h(K)) = G

and, if A−(N) = K, then there is a contractible isolating block B ∈ N (K) with
B− = ∅.

Remark 3.4. Because path-connected spaces are also (quasi-)connected, the
result holds for Alexander–Spanier cohomology {Hn} as well.

Proof. We only need to show the first equivalence. The rest follows from
the previous lemma.

Suppose A−(N) = K, then we can choose an isolating block B ⊂ N with
B− = ∅ and B = A+(B). We define the following homotopy H:B × [0, 1] → B

H(y, τ) =

{
yπ

τ

1− τ
τ ∈ [0, 1),

x0 τ = 1.

Since π:B × [0,∞) → B is defined and therefore continuous, H is continuous
for all (y, τ) ∈ B × [0, 1). So let (yn, τn) → (y, 1) with τn 6= 1. Then tn =
τn/(1− τn) → ∞, {H(yn, τn) = ynπtn}n∈N is precompact and every cluster
point is in A−(N) = {x0}, i.e. ynπtn → x0. Hence H is continuous.

Because H(x, 0) = x and H(x, 1) = x0 for all x ∈ B, H is a contraction of B

to x0 ∈ B and

h(K) = [B q {p}, p] = [{x0} q {p}, p] = Σ0.

Conversely, let h(K) = Σ0. Then h(K) is not path-connected. Because
K = {x0}, ω(z) = {x0} for all z ∈ A+(B) and α(σ) = {x0} for all full left
solutions σ in B. This means that A−(N) = K according to the previous
lemma. �

Finally we calculate the index for stable invariant sets which are local neigh-
bourhood retracts. To show that we need the following lemma which is a variant
for stable invariant set of a lemma in [6] used to prove the existence of isolating
blocks.

Lemma 3.5 ([6, Lemma 2.1]). Let ∅ 6= K ∈ S be stable and B ∈ N (K) be
an isolating block with B− = ∅. Define F :B → [0, 1] by

F (x) := min{1,dist(x,K)}

and for some strictly increasing C∞-diffeomorphism α: [0,∞) → [1, 2) define
g−:B → [0, 2] by

g−(x) := sup{α(t)F (xπt) | 0 ≤ t < ∞}.
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Then g− is continuous and g−(x) = 0 if and only if x ∈ K. Furthermore,
t 7→ g(xπt) is strictly decreasing for t ∈ R+ and x ∈ B \K.

Using the function g− we can define a strong deformation retract of B which
ensures that the distance between the boundary of B and K is at most δ.

Lemma 3.6. Under the assumptions above let 0 < δ < 1 and define tδ:B →
[0,∞) by

tδ(x) := inf
t∈R+

{t | g−(xπt) ≤ δ}

and define a deformation Hδ:B × [0, 1] → B by

Hδ(x, τ) = xπ(τ · tδ(x)).

Then tδ and H are well-defined and continuous. In particular

dist(Hδ(x, 1),K) ≤ δ

and Hδ(x, τ) = x for all x ∈ B with dist(x,K) ≤ δ.

Proof. Suppose tδ is well-defined and continuous. Then H is a composition
of continuous functions and therefore continuous. Furthermore, if g−(x) < 1 then
dist(x, K) ≤ g−(x). Because g−(xπtδ(x)) ≤ δ < 1 by definition of tδ(x),

dist(Hδ(x, 1),K) ≤ δ.

Now we show that tδ is well-defined and continuous: Let x ∈ B. Since
B− = ∅, B = A+(B) and thus

dist(xπt,K) → 0 as t →∞.

Because K is compact, there is a sequence tn → ∞ such that xπtn → x∗ ∈ K

and thus g−(xπtn) → g(x∗) = 0, i.e. there is an N > 0 such that g−(xπtN ) ≤ δ.
Because g− is decreasing along orbits

g−(xπt) ≤ g−(xπtN ) ≤ δ

for t ≥ tN , i.e. tδ(x) ≤ tN < ∞.
Now, let xn → x with xn, x ∈ B. If tδ(x) = 0, then g−(x) ≤ δ and thus

g−(xn) → g−(x) ≤ δ, i.e. tδ(xn) → 0.
If there is an M > 0 such that tδ(x) > M then g−(xπM) > δ and thus

g−(xnπM) > δ for large n, i.e. tδ(xn) > M . Similarly, if tδ(x) < M , then
g−(xπM) < g−(xπtδ(x)) ≤ δ and g−(xnπM) < δ for large n, i.e. tδ(xn) < M .
This shows that tδ(xn) → tδ(x), i.e. tδ is continuous. �
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Definition 3.7 ((strong) local neighbourhood deformation retract). A sub-
set A of a topological space X is called a local neighbourhood deformation retract
if for every neighbourhood V of A there is neighbourhood U ⊂ V of A and
a continuous function D:U × [0, 1] → U such that for all x ∈ U and a ∈ A

D(x, 0) = x, D(a, 1) = a

and D(x, 1) ∈ A. If in addition D(a, t) = a for all t then A is called a strong
local neighbourhood deformation retract.

Remark 3.8. If A is a (strong) local neighbourhood deformation retract
then A is homotopy equivalent to U from the definition. In particular the fol-
lowing theorem generalizes the Theorem 3.3 because stable isolated {x} ∈ S are
locally contractible, i.e. local neighbourhood deformations retracts.

Theorem 3.9. If K ∈ S is stable and a local neighbourhood deformation
retract then h(K) = [K q {p}, p].

Proof. Because K is stable, there is an isolating block B ∈ N (K) with
B− = ∅. Since B is a neighbourhood of K and K a local neighbourhood defor-
mation retract, there is a neighbourhood U ⊂ B of K and a deformation retract
D:U × [0, 1] → U .

Let Bδ(x) := {y ∈ X | d(x, y) < δ}. Because U is a neighbourhood of K

there are δx > 0 such that Bδx
(x) ⊂ U for every x ∈ K. Since K is compact and

{Bδx(x)}x∈K is an open cover of K, there are finitely many x1, . . . , xn ∈ K such
that K ⊂ Uδ =

⋃
xi

Bδi
(xi) for δ := max{δi}. In particular, for every x ∈ Uδ,

dist(x, K) < δ.
Let Hδ be the deformation of the previous lemma. Then Hδ(x, τ) = x for

x ∈ Uδ and Hδ(B, 1) ⊂ Uδ ⊂ U . We define a deformation retract H:B× [0, 1] →
B as follows

H(x, τ) :=

{
Hδ(x, 2τ) for τ ∈ [0, 1/2],

D(Hδ(x, 1), 2τ − 1) for τ ∈ [1/2, 1].

Because D and Hδ are deformation retracts with image in B and Hδ(B, 1) ⊂ U ,
this is well-defined and therefore continuous. In particular H(x, 1) ∈ K and
H(a, 1) = a for x ∈ B and a ∈ K because Hδ(a, τ) = a and D(a, 1) = a.
Therefore B and K are homotopy equivalent, i.e.

h(K) = [B q {p}, p] = [K q {p}, p]. �

4. Mountain pass points

In this section we show that the first singular homology characterizes moun-
tain pass points completely. Under further assumptions we will compute the
homotopy index in the next section.
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Definition 4.1 (gradient-like semiflow). Let X be a metric space, π be
a (local) semiflow on X and E = {x ∈ X | σ(t) ≡ x is a solution of π} be the set
of equilibria. π is called a gradient-like semiflow if there is a continuous function
f :X → R such that, for all x ∈ X \ E, t 7→ f(xπt) is strictly decreasing in
0 ≤ t < ωx := sup{t > 0 | (t, x) ∈ D}.

Notation. We will use the following notation

fc = {x ∈ X | f(x) ≤ c}, ḟc = {x ∈ X | f(x) < c},
fc = {x ∈ X | f(x) ≥ c}, ḟc = {x ∈ X | f(x) > c}

and f b
c = f b ∩ fc.

Definition 4.2 (mountain pass point [4]). Let π be a gradient-like semiflow
(w.r.t. f). An isolated equilibrium x0 with f(x0) = c is called mountain pass
point if there is a neighbourhood B′ of x0 such that for any neighbourhood
B ⊂ B′ of x0, fc ∩B \ {x0} is non-empty and not path-connected.

The main result of this section is the following theorem:

Theorem 4.3 (homology index of mountain pass points). Let X be a Banach
space, i.e. a complete normed vector space, and let π be a gradient-like semiflow
(w.r.t. f) in an open set U ⊂ X. If {x0} ∈ S is an isolated equilibrium then

x0 is a mountain pass point ⇔ H1(h({x0});G) 6= 0.

Remark 4.4. The if-part can be proven with the relaxed condition “X is lo-
cally path-connected in x0” and the “only if” part with “X is locally contractible
in x0” (we just need H1(U) = 0 for a small neighbourhood U of x0).

4.1. “If” part. We recall the following lemma from [7] which shows that
for gradient-like flows the exist set can be chosen “below” the energy level of x0

and that the critical groups are essentially the homology groups of the homotopy
index. Usually critical groups are used without a specific (semi)flow and results
are proven using Morse theory and the Palais–Smale condition on f . Here we
only assume continuity of f and strong π-admissibility of a neighbourhood of x0.

Lemma 4.5 [7, III-4.8,4.9]). Let {x0} ∈ S with f(x0) = c. Then there exists
an isolating block B ∈ N ({x0}) with B− ⊂ fc−ε for some ε > 0 and a strong
deformation retract ρ:B × [0, 1] → B of B onto fc ∩B and

Hn(h({x0})) = Hn(fc ∩B, fc ∩B \ {x0}) = Hn(fc ∩ U, fc ∩ U \ {x0})

for any neighbourhood U of x0 and homology {Hn}.

The following theorem is similar to the well-known result that for mountain
pass points the first critical group is non-zero. Instead of using an “artificial”



Conley Index of Isolated Equilibria 385

pseudo-gradient flow defined via f we use the deformation of the previous lemma,
i.e. we will use the semiflow π directly.

Theorem 4.6. Let X be locally path-connected in x0. If {x0} ∈ S is a moun-
tain pass point for a gradient-like semiflow π (w.r.t. f) with f(x0) = c then

H1(h({x0})) 6= 0

for the singular homology {Hn}.

Proof. Because {x0} ∈ S, every neighbourhood U of x0 contains some
U ⊃ N ∈ N ({x0}). Let B′ be as in Definition 4.2. Then there exists a strongly
π-admissible, isolating block B ⊂ B′ with B− ⊂ fc−ε for some ε > 0.

Let B =
⋃

α∈I Bα be the decomposition of B into path-components with
I = B/∼pc. Because ρ from Lemma 4.5 is a strong deformation retract, ρ(Bα, 1)
is path-connected and equals fc ∩Bα.

According to Lemma 2.2

fc ∩B = ρ(B, 1) =
⋃
α∈I

ρ(Bα, 1) =
⋃
α∈I

fc ∩Bα.

Let B∗ be the path-component containing x0. Because B is a neighbourhood
of x0 and X is locally path-connected in x0, there is a path-connected neighbour-
hood U ⊂ B of x0. In particular U ⊂ B∗, so B∗ is the maximal, path-connected
neighbourhood of x0 in B ⊂ B′.

Therefore C: = fc ∩ B∗ \ {x0} is non-empty and not path-connected. Let
J = C/∼pc. Then |J | > 1 and H0(C) = G|J|.

Because B∗ is path-connected, so is fc∩B∗ = ρ(B∗, 1) and H0(fc∩B∗) = G.
Obviously H0(C) and H0(fc ∩B∗) are not isomorphic.

For the topological pair (fc ∩B∗, C) the following sequence is exact

· · · j∗−→ H1(fc ∩B∗, C) ∂1−→ H0(C) i∗−→ H0(fc ∩B∗) −→ 0.

Suppose now H1(fc ∩B∗, C) = 0, then ∂1 = 0 and therefore

H0(C) ∼= H0(fc ∩B∗),

which is a contradiction.
Finally Bα \ {x0} = Bα for all α ∈ I \ {∗} and

H1(h(K)) =H1(fc ∩B, f c ∩B \ {x0})

=H1(fc ∩B∗, f
c ∩B∗ \ {x0})⊕

( ⊕
α∈I\{∗}

H1(Bα, Bα)
)

=H1(fc ∩B∗, f
c ∩B∗ \ {x0}) 6= 0. �
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Corollary 4.7. Under the assumptions of the previous theorem let B and
B∗ be chosen as in the proof. If, in addition, X is locally path-connected then
for every path-component C of fc ∩B∗ \ {x0} there is a y ∈ A−(B)∩C, i.e. the
path-component C contains a full left solution (through y) leaving the isolating
block.

Proof. Let x ∈ fc ∩ B∗ \ {x0} be arbitrary. Because fc ∩ B∗ is path-
connected, there is a path g: [0, 1] → fc ∩ B∗ with g(0) = x and g(1) = x0.
Since [0, 1] is compact, {x0} closed and g continuous, g−1({x0}) is compact. Let
t0 = min{t ∈ [0, 1] | g(t) = x0}. Because g(0) 6= x0, t0 > 0 and x0 /∈ g([0, t0)).

Therefore g([0, t0) ⊂ fc ∩ B∗ \ {x0}. In particular g([0, t0)) is in the path-
component of fc ∩ B∗ \ {x0} containing x. If this wasn’t the case, then there
would be a t′ ∈ [0, t0) such that there is no path in fc∩B∗ \{x0} between x and
g(t′). But h: [0, 1] → fc ∩B∗ \ {x0} with h(t) = g(t · t0) is such a path, which is
a contradiction.

According to the proof of the previous theorem there is an ε > 0 such that
B− ⊂ fc−ε. Choose 0 < δ < ε. Similarly to the proof of [7, III-4.8] there is
unique r(x) ∈ [0,∞) for all x ∈ B∗ ∩ fc

c−δ \ {x0} such that f(xπr(x)) = c− δ.
Let 0 ≤ tn < t0 be a sequence with tn → t0. Because f and g are continuous

limtn→t0 f(g(tn)) = f(x0) = c, so there is an N > 0 such that, for all n ≥ N ,

f(g(tn)) > c− δ.

W.l.o.g. we can choose a sequence tn → t0 such that this always holds.
Let xn = g(tn) and yn = xnπr(xn). Obviously every xn and yn are in the

same path-component of fc ∩B∗ \ {x0}, which contains x.
Suppose there is an M < ∞ such that r(xn) ≤ M . Then there is a subse-

quence n′ such that r(xn′) → r0 < ∞. Because xn → x0 and [6, Lemma 1.1]

xnπr(xn) → x0πr0 = x0 /∈ fc−δ.

But fc−δ is closed and xnπr(xn) ∈ fc−δ, i.e. the limit must be in fc−δ, which is
a contradiction.

So we can assume r(xn) ↗∞. By [6, Lemma 1.1] {xnπr(xn)}n∈N is precom-
pact and every cluster point z is in A−(B) and therefore f(z) = f(xnπr(xn)) =
c− δ.

Choose a subsequence (xn′) such that yn′ = xn′πr(xn′) → x∗ ∈ A−(B) \
{x0}. We will finish the proof if we show that x and x∗ are path-connected in
fc ∩B∗ \ {x0}.

Suppose x∗ ∈ ∂B. Because B is an isolating block and A−(B) ∩ ∂B ⊂ B−,
x∗ ∈ B− ⊂ fc−ε. But this is a contradiction because f(x∗) = c − δ > c − ε.
Therefore x∗ is in the interior of B and in ḟc∩ intB, too. In particular ḟc∩ intB

is open and disjoint from {x0}.
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Since X is locally path-connected, so is ḟc ∩ intB and there is a path-
connected neighbourhood U ⊂ ḟc ∩ intB of x∗. Because yn′ → x∗, there is
an N > 0 such that yn′ ∈ U for all n ≥ N .

So there is a continuous function h: [0, 1] → U with h(0) = x∗ and h(1) = yN .
Because U ⊂ fc ∩B \ {x0},

x∗ ∼pc yN ∼pc x in fc ∩B \ {x0},

that is x∗ and x are in the path-component of fc ∩B \ {x0} and therefore they
are in the same path-component of fc ∩B∗ \ {x0}. �

4.2. “Only if” part. For the ,,only if” part we will show that the assump-
tions of Theorem 2.3 are satisfied if x0 is not a mountain pass point. First of all
let’s look at the converse of the definition of a mountain pass point

Definition 4.8. An isolated equilibrium x0 of a gradient-like semiflow π

(w.r.t. f) is not a mountain pass point if for every neighbourhood B′ of x0 there
is a neighbourhood B ⊂ B′ of x0 such that fc ∩B \ {x0} is path-connected (the
empty set is path-connected).

From now on let X be a Banach space. With the help of Theorem 2.3 we
are now able to complete the proof:

Proof of Theorem 4.3. Since X is a Banach space it is locally path-
connected and therefore U is locally path-connected, too. So Theorem 4.6 ap-
plies, i.e. if x0 is a mountain pass point then H1(h({x0})) 6= 0.

We will show the converse. Suppose x0 is not a mountain pass point. Let
B and B∗ be chosen as in the proof of Theorem 4.6 such that B∗ is the path-
component of B containing x0. In addition, it was shown that

H1(h({x0})) = H1(fc ∩B∗, f
c ∩B∗ \ {x0}).

Suppose fc∩B∗\{x0} = ∅ then fc∩B∗ = {x0} and therefore H1(h({x0})) =
H1({x0}) = 0. In particular x0 is stable if this happens.

So w.l.o.g. we can assume fc ∩ B∗ \ {x0} 6= ∅. Because X is locally convex
and B∗ is a neighbourhood of x0, there is a convex neighbourhood V ⊂ B∗ of x0

(we only need a neighbourhood with H1(V ) = 0). Since x0 is not a mountain
pass point there is a neighbourhood U ⊂ V of x0 such that fc ∩ U \ {x0} is
path-connected.

If fc ∩ U \ {x0} = ∅ then fc ∩ U = {x0} and according to Lemma 4.5

H1(h({x0})) = H1(fc ∩ U, f c ∩ U \ {x0}) = H1({x0}) = 0.

Otherwise fc∩U \{x0} is non-empty and path-connected. Let α0: [0, 1] → fc∩U

any path with α(0), α(1) 6= x0 and let x∗ ∈ fc ∩ U \ {x0} be arbitrary. Because
fc ∩ U \ {x0} is path-connected, there are paths α1, α2: [0, 1] → fc ∩ U \ {x0}
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such that α0(1) = α1(1), α1(0) = x∗ = α2(0) and α2(1) = α0(0). Denote by
βi = σαi

the induced 1-chains. Then the 1-chain γ = β0 − β1 + β2 is a 1-cycle,
i.e. ∂γ = 0. Since the image of αi is in fc ∩U ⊂ V ∩ (fc ∩B∗) we regard βi and
γ as 1-chains in C1(V ) as well as in C1(fc ∩B∗).

Because H1(V ) = 0 there is a singular 2-chain β ∈ C2(V ) with ∂β = γ.
Let ρ be the strong deformation retract of Lemma 4.5. Then φ = i ◦

ρ( · , 1):V → fc ∩ B∗, where i: ρ(V, 1) → fc ∩ B∗ is the inclusion map, induces
a map φ]:Cn(V ) → Cn(fc ∩ B∗) on the singular n-chains. Since ρ|fc∩B∗ =
idfc∩B∗ and αi([0, 1]) ⊂ fc ∩ B∗ we have φ](βi) = βi. Because φ] is linear and
commutes with the boundary map ∂

∂(φ]β) = φ](∂β) = φ](β0 − β1 + β2) = β0 − β1 + β2.

Obviously fc ∩U is a neighbourhood of x0 in fc ∩B∗ and βi ∈ C1(fc ∩B∗ \
{x0}) for i = 1, 2 so that Theorem 2.3 applies and

H1(fc ∩B∗, f
c ∩B∗ \ {x0}) = 0. �

4.3. Mountain pass lemma. Let π be a gradient-like, global semiflow
w.r.t. f on a locally path-connected space X such that X is strongly π-admissi-
ble. Let E be the set of equilibria in X. Then every isolated equilibrium x is in
S(π). Because π is gradient-like, ω(x) ⊂ E for all x ∈ X.

We want to show the existence of a mountain pass point in E. We define
Γx,y for x, y ∈ X as follows

Γx,y = {f ∈ C([0, 1], X) | f(0) = x, f(1) = y}.

Theorem 4.9. Suppose E is finite, for an x1 ∈ E there is an isolating block
B ∈ N ({x1}) with f(x) ≥ c̃ for all x ∈ ∂B and c̃ > c = f({x1}) and there is an
x2 ∈ E \ {x1} with f(x2) < c̃ path-connected to x1, i.e. Γx1,x2 6= ∅. Then there
is an equilibrium x0 ∈ E with

f(x0) = inf
g∈Γx1,x2

sup
t∈[0,1]

f(g(t)) ≥ c̃.

If, in addition, there is a path g ∈ Γx1,x2 with supt∈[0,1] f(g(t)) = f(x0) then
there is a mountain pass point xm ∈ E with f(xm) = f(x0).

Remark 4.10. We believe that the existence of the path g is necessary for
the equilibrium xm with f(xm) = f(x0) to be a mountain pass point.

Proof. Because Γx1,x2 6= ∅,

M := inf
g∈Γx1,x2

sup
t∈[0,1]

f(g(t))
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is defined and c < c̃ ≤ M < ∞. So there is a sequence gn ∈ Γx1,x2 such that

sup
t∈[0,1]

f(gn(t)) ≤ M +
1
n

.

Let Ed = {x ∈ E | f(x) = d}. Suppose EM = ∅. Because E is finite, there
is an N > 0 such that EM+ε = ∅ for all 0 ≤ ε ≤ 1/N .

Let x∈fM+1/N . Because X is positive π-invariant and strongly π-admissible,
{xπtn}n∈N is precompact for some tn →∞. In particular every cluster point is
in ω(x) ⊂ E. Choose a subsequence n′ such that xπtn′ → x∗ ∈ E. Because π is
gradient-like and EM+ε = ∅ for all 0 ≤ ε ≤ 1/N , f(x∗) < M . This shows that
f(xπtn′) < M for large n′, i.e. for every x ∈ fM+1/N there is a t(x) such that
f(xπt) < M for t ≥ t(x).

Because π( · , t) and f are continuous, there is a neighbourhood Ux of x such
that f(yπt) < M for y ∈ Ux and t ≥ t(x).

Let gN ∈ Γx1,x2 be chosen as above. Then f(x) ≤ M + 1/N for every
x ∈ g−1

N ([0, 1]). Because [0, 1] is compact, so is gN ([0, 1]) and there is a finite
cover Uy1 , . . . , Uyk

of gN ([0, 1]) for yi ∈ gN ([0, 1]).
Let T := max t(yi) and define g̃N (t) = gN (t)πT . Because π is continuous

and gN (0), gN (1) ∈ E, g̃N ∈ Γx1,x2 and supt∈[0,1] g̃N (t) < M . But this is a con-
tradiction to the definition of M . Therefore EM 6= ∅.

Suppose there is a g ∈ Γx1,x2 with g([0, 1]) ⊂ fM . Let Bx be an isolating
block of x ∈ EM with B−

x ⊂ fM−ε. We can choose Bx such that Bx ∩ By = ∅
for all x, y ∈ EM and x 6= y. Because fM ∩ Bx \ {x} is disjoint from A+(Bx)
(see proof of [7, Theorem III-4.8]), we have f(yπ1) < M for all fM ∩ Bx \ {x}.
So if we define g̃(t) = g(t)π1 then g̃ ∈ Γx1,x2 and

f−1(M) ∩ g̃([0, 1]) ⊂ EM ,

i.e. the maximum is only achieved on the set EM .
If there is no mountain pass point in EM , then there are neighbourhoods

Ux ⊂ Bx such that fM ∩Ux \{x} is path-connected. So we can construct a path
h ∈ Γx1,x2 with supt∈[0,1] f(h(t)) ≤ M which avoids all x ∈ EM . (If fM∩Ux\{x}
is empty then x /∈ g([0, 1]).) Again h̃(t) = h(t)π1 is in Γx1,x2 and

sup
t∈[0,1]

f(h̃(t)) < M,

which is a contradiction to the definition of M . Therefore there is a mountain
pass point xm ∈ EM . �

This can be applied to the following case. The reaction diffusion equation

ut −∆u = f(u),

u|∂Ω = 0,
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for some open, bounded Ω ⊂ Rn with “nice” boundary and a “nice” function f

induces a semiflow π on U ⊂ Xα ⊂ Lp(Ω) (see below). Furthermore, if u− and
u+ are two equilibria and u−(x) < u+(x) in Ω, then the set

C = [u−, u+] := {u ∈ Xα | u−(x) ≤ u(x) ≤ u+(x)}

is positive π-invariant and strongly π-admissible. If u± are stable in C, then
there is a mountain pass point u0 in C, which is in the interior of C (see [4,
Theorem 1]). The result from the next section shows that h({u0}) = Σ1.

5. Semilinear parabolic equations

Now we want to compute the homotopy index of mountain pass points of
parabolic equations completely. We only mention briefly the required definitions
and otherwise refer to [3] and [7, Chapter II].

Definition 5.1. Let A be sectorial in a Banach space X and U ⊂ Xα

open where Xα for some α ∈ [0, 1) is the fractional Banach space induced by A.
Furthermore, let f :U → X be a locally Lipschitz continuous map. The following
equation is called an (autonomous) semilinear parabolic equation:

(5.1)
du

dt
+ Au = f(u).

A solution of (5.1) through u0 ∈ U is a continuous map u: [0, t0) → X with
u(0) = u0 such that u is differentiable in (0, t0) and u(t) ∈ D(A) for t ∈ (0, t0),
the map t 7→ f(u(t)) is locally Hölder continuous in (0, t0),

∫ a

0
‖f(u(t))‖ dt < ∞

for some a > 0 and (5.1) is satisfied in (0, t0).

Assume below that the assumptions of Definition 5.1 hold and denote by π

the induced flow which exists under the condition given in the definition (see [3]).
Let x0 be an isolated equilibrium. Then it admits a strongly π-admissible

isolating neighbourhood. The linearization in x0 is defined as L := A − f ′(x0).
Set σ0(L) := σ(L)∩ iR and σ<(L) := σ(L)∩{λ ∈ C | <λ < 0} and denote by X0

and X− the corresponding generalized eigenspaces. If σ0(L) is isolated in σ(L),
X0 ⊕ X− is finite dimensional then according to the index product formula [7,
II-3.1]

h({x0}, π) = h({xc}, πc) ∧ Σm

where m = dim X−, πc is the center flow on a dim X0-dimensional (local) center
manifold (see [3] or [7, II-2.1]) and {xc} is isolated for πc. Combining this formula
and Theorem 4.3 we can compute the homotopy index for mountain pass points.

Theorem 5.2. Suppose the assumptions above hold and π is gradient-like
w.r.t. some continuous map f . Furthermore, suppose the following holds

x0 is isolated and dim X− = 0 ⇒ dim X0 ≤ 1.
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Then
x0 is an isolated mountain pass point ⇔ h({x0}) = Σ1.

Proof. If x0 is an isolated equilibrium then {x0} ∈ S and thus

h({x0}, π) = h({xc}, πc) ∧ Σm,

where m = dim X− and πc is the reduced semiflow on the local center manifold.
In particular we have

Hm+i(h({x0}, π)) = Hm+i(h({xc}, πc) ∧ Σm) = Hi(h({xc}, πc)),

so that Hj(h({x0}, π)) = 0 for j < m.
Suppose x0 is a mountain pass point then

H1(h({x0}, π)) 6= 0.

Because Hj(h({x0}, π)) = 0 for j < m, we must have m ≤ 1.
If m = 1 then

0 6= H1(h({x0}, π)) = H0(h({xc}, πc)).

Because x0 is isolated and thus xc, Theorem 3.3 states that h({xc}, πc) = Σ0

and therefore
h({x0}, π) = Σ0 ∧ Σ1 = Σ1.

If m = 0 then dim X0 ≤ 1. Suppose dim X0 = 0 then h({x0}, π) =
h({xc}, πc) = Σ0. Thus H1(h({x0}, π) = 0 which is not possible. Hence
dim X0 = 1.

For one dimensional isolated equilibria we have

h({xc}, πc) =


Σ0 then H0(h({xc}, πc)) 6= 0,

Σ1 then H1(h({xc}, πc)) 6= 0,

0 then H∗(h({xc}, πc)) = 0.

Because
H1(h({xc}, πc)) = H1(h({x0}, π)) 6= 0,

only the second case can happen, i.e.

h({x0}, π) = Σ0 ∧ h({xc}, πc) = Σ1.

It remains to show the “only if” part. Suppose h({x0}, π) = Σ1. Then

H1(h({x0}, π)) = G 6= 0.

Because U ⊂ Xα is open, according to Theorem 4.3 x0 is a mountain pass
point. �

Remark 5.3. The conclusion “H1 6= 0 then h = Σ1” can also be made for
the Alexander–Spanier cohomology {Hn} (also see Remark 3.4).
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With the help of this theorem we are able to compute the homotopy index
of isolated mountain pass points for reaction diffusion equations completely: For
this type of equation A is the Laplacian −∆ on X = Lp(Ω) for some open and
bounded Ω ⊂ Rn with smooth boundary. If u ∈ X is a solution of −∆u = f(u)
and f ′(u) ∈ L∞(Ω) then L = −∆− f ′(u) has simple principal eigenvalue. If we
assume that ut−∆u = f(u) induces a semiflow on some Xα then the assumptions
of the previous theorem are satisfied and the homotopy index of a mountain pass
point is Σ1.

Besides this we can prove a result for mountain pass points and critical groups
which is proven completely in [1, Proposition 3.3]. Instead of infinite dimensional
Morse theory we will use the homotopy index and generalize the statement to
Alexander–Spanier cohomology.

Corollary 5.4. Let U ⊂ H be an open neighbourhood of 0 in a Hilbert
space H, φ:U → R a C2-function satisfying the Palais–Smale condition in 0 and
φ(0) = 0, ∇φ(0) = 0, ∇φ(u) 6= 0 for u 6= 0. Furthermore, L = φ′′(0):H → H is
a Fredholm operator with finite Morse index m such that dim kerL ≤ 1 whenever
L ≥ 0. Under these assumptions

0 is an isolated mountain pass point ⇔ h({0}) = Σ1

⇔ H1(φ0 ∩ U, φ0 ∩ U \ {0}) = Z ⇔ H1(φ0 ∩ U, φ0 ∩ U \ {0}) 6= 0

for {Hn} either the singular homology {Hn} or the Alexander–Spanier cohomo-
logy {Hn}.

Remark 5.5. For singular homology we don’t need the finite Morse index
because Rybakowski proved in [7, III-4.10] that Hn(φ0 ∩ U, φ0 ∩ U \ {0}) = 0 if
m = ∞. Using [1, Proposition 3.3] shows that the linearization of a mountain
pass point has finite Morse-index.

Proof. We will use the statements from the proof of Theorem 4.10 in [7],
i.e. ẋ = −∇φ(x) induces a two-sided local gradient-like flow πφ w.r.t. φ whose
critical points (∇φ(x0) = 0) are exactly the equilibria of πφ and the linearization
in 0 is L.

Since L is self-adjoint and Fredholm and its Morse index is finite, L is sectorial
and the previous theorem can be applied, i.e.

0 is an isolated mountain pass point ⇔ h({0}) = Σ1.

Lemma 4.5 shows that

Hn(h({0})) = Hn(φ0 ∩ U, φ0 ∩ U \ {0}).

According to the Remark 5.3 H1(h({0})) 6= 0 is only possible if and only if

h({0}) = Σ1. �
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