Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Realization of rotation vectors for volume preserving homeomorphisms of the torus
  • Home
  • /
  • Realization of rotation vectors for volume preserving homeomorphisms of the torus
  1. Home /
  2. Archives /
  3. Vol 60, No 2 (December 2022) /
  4. Articles

Realization of rotation vectors for volume preserving homeomorphisms of the torus

Authors

  • Paulo Varandas https://orcid.org/0000-0002-0902-8718

DOI:

https://doi.org/10.12775/TMNA.2021.042

Keywords

Rotation sets, ergodic optimization, specification property

Abstract

In this note we study the level sets of rotation vectors for $C^0$-generic homeomorphisms in the space $\text{Homeo}_{0,\lambda}(\mathbb T^m)$ $(m \geq 3)$ of volume preserving homeomorphisms isotopic to the identity, and contribute to the ergodic optimization of vector valued observables. It is known that such homeomorphisms satisfy the specification property and their rotation sets are polyhedrons with rational vertices and non-empty interior, and stable \cite{BLV}, \cite{GL}, \cite{LV}. For a $C^0$-generic homeomorphism we prove uniform bounded deviations for the displacement of points in $\mathbb T^m$ in the support of any ergodic probability that generates a rotation vector in the boundary of the rotation set. As consequences, we show: (i) the support of ergodic probabilities generating rotation vectors in the boundary of rotation sets has empty interior, and (ii) weak version of Boyland's conjecture: the rotation vector of the Lebesgue measure lies in the interior of the rotation sets for a $C^0$-open and dense subset of homeomorphisms in $\text{Homeo}_{0,\lambda}(\mathbb T^m)$.

References

S. Addas-Zanata, Instability for the rotation set of homeomorphisms of the torus homotopic to the identity, Ergodic Theory Dynam. Systems 24 (2004), 319–328.

G. Atkinson, Recurrence of cocycles and random walks., J. London Math. Soc. 13 (1976), no. 2, 486–488.

W. Bonomo, H. Lima and P. Varandas, The rotation sets of most volume preserving homeomorphisms on Tm are stable, convex and rational polyhedrons, Israel J. Math. 243 (2021), 81–102.

W. Bonomo, H. Lima and P. Varandas, Shape and stability of rotation sets for incompressible vector fields on the torus Tm , Preprint Researchgate, 10.13140/RG.2.2.14208.66568.

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math Soc. 184 (1973), 125–136.

J. Conejeros and F. Tal, Applications of forcing theory to homeomorphisms of the closed annulus, Preprint ArXiv: 1909.09881v1.

J. Franks, Recurrence and fixed points for surface homeomorphisms, Ergodic Theory Dynam. Systems 8 (1988), 99–107.

J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc. 311 (1989), no. 1, 107–115.

W. Geller and M. Misiurewicz, Rotation and entropy, Trans. Amer. Math. Soc. 351 (1999), no. 7, 2927–2948.

P.-A. Guiheneuf and A. Koropecki, Stability of the rotation set of area-preserving toral homeomorphisms, Nonlinearity 30 (2017), 1089–1096.

P.-A. Guiheneuf and T. Lefeuvre, On the genericity of the shadowing property for conservative homeomorphisms, Proc. Amer. Math. Soc. 146 (2018), 4225–4237.

O. Jenkinson, Rotation, entropy and equilibrium states, Trans. Amer. Math. Soc. 353 (2001), 3713–3739.

O. Jenkinson, Ergodic optimization, Discrete Contin. Dyn. Syst. A 15 (2006), 197–224.

T. Kucherenko and C. Wolf, Geometry and entropy of generalized rotation sets, Israel J. Math. 199 (2014), no. 791.

P. Le Calvez and F.A. Tal, Forcing theory for transverse trajectories of surface homeomorphisms, Invent. Math. 212 (2018), no. 2, 619–729.

H. Lima and P. Varandas, On the rotation sets of generic homeomorphisms on the orus Tm , Ergodic Theory Dynam. Systems 41 (2021), 2983-3022.

J. Llibre and R. MacKay, Rotation vectors and entropy for homeomorphisms of the torus homotopic to the identity, Ergodic Theory Dynam. Systems 11 (1991), no. 1, 115–128.

M. Misiurewicz and K. Ziemian, Rotation sets for maps of tori, J. London Math. Soc. 40 (1989), no. 3, 490–506.

I. Morris, Ergodic optimization for generic continuous functions, Discrete Contin. Dyn. Syst. 27 (2010), 383–388.

J. Oxtoby and S. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. 42 (1941), no. 2, 874–920.

S. Pavez-Molina, Generic rotation sets, Ergodic Theory Dynam. Systems 42 (2022), no. 1, 250–262.

M. Pollicott, Rotation sets for homeomorphisms and homology, Trans. Amer. Math. Soc. 331 (1992), no. 2, 881–894.

K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms, Invent. Math. 11 (1970), 99–109.

K. Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc. 190 (1974), 285–299.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-08-31

How to Cite

1.
VARANDAS, Paulo. Realization of rotation vectors for volume preserving homeomorphisms of the torus. Topological Methods in Nonlinear Analysis. Online. 31 August 2022. Vol. 60, no. 2, pp. 441 - 455. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2021.042.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 2 (December 2022)

Section

Articles

License

Copyright (c) 2022 Paulo Varandas

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop