Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Asymptotic behavior of bifurcation curve of nonlinear eigenvalue problem with logarithmic nonlinearity
  • Home
  • /
  • Asymptotic behavior of bifurcation curve of nonlinear eigenvalue problem with logarithmic nonlinearity
  1. Home /
  2. Archives /
  3. Vol 60, No 1 (September 2022) /
  4. Articles

Asymptotic behavior of bifurcation curve of nonlinear eigenvalue problem with logarithmic nonlinearity

Authors

  • Tetsutaro Shibata

DOI:

https://doi.org/10.12775/TMNA.2021.040

Keywords

Bifurcation curve, logarithmic nonlinearity, asymptotic behavior

Abstract

We study the following nonlinear eigenvalue problem $$ -u''(t) = \lambda u(t)^p\log(1+u(t)), \quad u(t) > 0, \quad t \in I := (-1,1), \quad u(\pm 1) = 0, $$% where $p \ge 0$ is a given constant and $\lambda > 0$ is a parameter. It is known that, for any given $\alpha > 0$, there exists a unique classical solution pair $(\lambda(\alpha), u_\alpha)$ with $\alpha = \Vert u_\alpha\Vert_\infty$. We establish the asymptotic formulas for the bifurcation curves $\lambda(\alpha)$ and the shape of solution $u_\alpha$ as $\alpha \to \infty$ and $\alpha \to 0$.

References

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.

I. Białynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Pol. Sc. 23, 461–466 (1975); Nonlinear Wave Mechanics, Ann. Phys. (NY) 100 (1976), 62–93.

I. Białynicki-Birula and T. Sowiński, Solutions of the logarithmic Schrödinger equation in rotating harmonic trap, Nonlinear Waves: Classical and Quantum Aspects, (F.Kh. Abdullaev and V.V. Konotop, eds.), Kluwer Academic, Dordrecht, 2004, p. 99.

S. Cano-Casanova and J. López-Gómez, Blow-up rates of radially symmetric large solutions, J. Math. Anal. Appl. 352 (2009), 166–174.

R. Chiappinelli, Upper and lower bounds for higher order eigenvalues of some semilinear elliptic equations, Appl. Math. Comput. 216 (2010), 3772–3777.

J.M. Fraile, J. López-Gómez and J. Sabina de Lis, On the global structure of the set of positive solutions of some semilinear elliptic boundary value problems, J. Differential Equations 123 (1995), 180–212.

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, Translated from the Russian. Translation edited and with a preface by Daniel Zwillinger and Victor Moll, eighth edition, Elsevier/Academic Press, Amsterdam, 2015.

P. Korman and Y. Li, Infinitely many solutions at a resonance, Electron. J. Differ. Equ. Conf. 05 (2000), 105–111.

P. Korman, An oscillatory bifurcation from infinity, and from zero, NoDEA Nonlinear Differential Equations Appl. 15 (2008), 335–345.

P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J. 20 (1970/1971), 1–13.

T. Shibata, Global and local structures of oscillatory bifurcation curves, J. Spectral Theory 9 (2019), 991–1003.

T. Shibata, Asymptotic behavior and global structure of oscillatory bifurcation diagrams, Results Math. 74 (2019), no. 4, paper no. 145.

T. Shibata, Precise asymptotics for bifurcation curve of nonlinear ordinary differential equation, Mathematics 8 (2020), no. 8, 1272.

T. Shibata, Asymptotic behavior of solution to nonlinear eigenvalue problem, Mathematics 8 (2020), no. 11, 2064.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-07-30

How to Cite

1.
SHIBATA, Tetsutaro. Asymptotic behavior of bifurcation curve of nonlinear eigenvalue problem with logarithmic nonlinearity. Topological Methods in Nonlinear Analysis. Online. 30 July 2022. Vol. 60, no. 1, pp. 99 - 110. [Accessed 6 July 2025]. DOI 10.12775/TMNA.2021.040.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 1 (September 2022)

Section

Articles

License

Copyright (c) 2022 Tetsutaro Shibata

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop