Topological Methods in Nonlinear Analysis Volume 60, No. 1, 2022, 99–110 DOI: 10.12775/TMNA.2021.040

O2022 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

ASYMPTOTIC BEHAVIOR OF BIFURCATION CURVE OF NONLINEAR EIGENVALUE PROBLEM WITH LOGARITHMIC NONLINEARITY

Tetsutaro Shibata

ABSTRACT. We study the following nonlinear eigenvalue problem

$$\begin{split} -u''(t) &= \lambda u(t)^p \log(1+u(t)), \quad u(t) > 0, \quad t \in I := (-1,1), \quad u(\pm 1) = 0, \\ \text{where } p \geq 0 \text{ is a given constant and } \lambda > 0 \text{ is a parameter. It is known that,} \\ \text{for any given } \alpha > 0, \text{ there exists a unique classical solution pair } (\lambda(\alpha), u_\alpha) \\ \text{with } \alpha = \|u_\alpha\|_{\infty}. \text{ We establish the asymptotic formulas for the bifurcation} \\ \text{curves } \lambda(\alpha) \text{ and the shape of solution } u_\alpha \text{ as } \alpha \to \infty \text{ and } \alpha \to 0. \end{split}$$

1. Introduction

We consider the following nonlinear eigenvalue problems

(1.1)
$$-u''(t) = \lambda u(t)^p \log(1 + u(t)), \quad t \in I := (-1, 1),$$

$$(1.2) u(t) > 0, t \in I,$$

(1.3) u(-1) = u(1) = 0,

where $p \ge 0$ is a given constant and $\lambda > 0$ is a bifurcation parameter.

The problem (1.1)–(1.3) is motivated by one-dimensional stationary logarithmic Schrödinger equation which was introduced by Białynicki-Birula and Mycielski [2]. The equations with logarithmic nonlinearity have been studied by many authors to investigate the phenomena in the branches of physics. We

²⁰²⁰ Mathematics Subject Classification. Primary: 34C23; Secondary: 34F10.

Key words and phrases. Bifurcation curve; logarithmic nonlinearity; asymptotic behavior. This work was supported by JSPS KAKENHI Grant Number JP17K05330.