Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Topological entropy of diagonal maps on inverse limit spaces
  • Home
  • /
  • Topological entropy of diagonal maps on inverse limit spaces
  1. Home /
  2. Archives /
  3. Vol 59, No 2B (June 2022) /
  4. Articles

Topological entropy of diagonal maps on inverse limit spaces

Authors

  • Ana Anušić https://orcid.org/0000-0002-5950-8963
  • Christopher Mouron

DOI:

https://doi.org/10.12775/TMNA.2021.043

Keywords

Topological entropy, inverse limit space, set-valued maps

Abstract

We give an upper bound for the topological entropy of maps on inverse limit spaces in terms of their set-valued components. In a special case of a diagonal map on the inverse limit space $\underleftarrow{\lim}(I,f)$, where every diagonal component is the same map $g\colon I\to I$ which strongly commutes with $f$ (i.e.\ $f^{-1}\circ g=g\circ f^{-1}$), we show that the entropy equals $\max\{\mbox{\rm Ent}(f),\mbox{\rm Ent}(g)\}$. As a side product, we develop some techniques for computing topological entropy of set-valued maps.

References

R.L. Adler, A.G. Konheim and M.H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319.

L. Alvin and J. Kelly, Topological entropy of Markov set-valued functions, Ergodic Theory Dynam. Systems (2019), 17 pp.

A. Anušić and C. Mouron, Strongly commuting interval maps, preprint 2020, arXiv: 2010.15328 [math.DS].

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414.

R. Bowen, Topological entropy and axiom A, Proc. Sympos. Pure Math. XIV (1970), 23–41.

H. Bruin and S. Štimac, Entropy of homeomorphisms on unimodal inverse limit spaces, Nonlinearity 26 (2013), 991–1000.

D. Carrasco-Olivera, R. Metzger Alvan and A. Morales Rojas, Topological entropy for set-valued maps, Discrete Contin. Dyn. Syst. Ser. B 20 (2015), 3461–3474.

E.I. Dinaburg, A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR 190 (1970), 19–22. (in Russian)

G. Erceg and J. Kennedy, Topological entropy on closed sets in [0, 1]2 , Topology Appl. 246 (2018), 106–136.

H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen, Compos. Math. 4 (1937), 145–234.

L. Hoehn and R. Hernández-Gutiérrez, A fixed-point-free map of a tree-like continuum induced by bounded valence maps on trees, Colloq. Math. 151 (2018), no. 2, 305–316.

W.T. Ingram and W.S. Mahavier, Inverse limits of upper semi-continuous set valued functions, Houston J. Math. 32 (2006), no. 1, 119–130.

J.P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math. 43 (2017), no. 1, 263–282.

J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory Dynam. Systems 38 (2018), no. 4, 1499–1524.

W.S. Mahavier, Inverse limits with subsets of [0, 1] × [0, 1], Topology Appl. 141 (2004), no. 1–3, 225–231.

J. Mioduszewski, Mappings of inverse limits, Colloq. Math. 10 (1963), 39–44.

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45–63.

C. Mouron, A chainable continuum that admits a homeomorphism with entropy of arbitrary value, Houston J. Math. 35 (2009), no. 4, 1079–1090.

C. Mouron, Entropy of shift maps of the pseudo-arc, Topology Appl. 159 (2012), 34–39.

C. Mouron, Exact maps of the pseudo-arc, Topology Proc. 59 (2022), 315–328.

L.G. Oversteegen and J.T. Rogers, Jr., An inverse limit description of an atriodic tree-like continuum and an induced map without a fixed point, Houston J. Math. 6 (1980), no. 4, 549–564.

L.G. Oversteegen and J.T. Rogers, Jr., Fixed-point-free maps on tree-like continua, Topology Appl. 13 (1982), no. 1, 85–95.

B. Raines and T. Tennant, The specification property on a set-valued map and its inverse limit, Houston J. Math. 44 (2018), no. 2, 665–677.

X. Ye, Topological entropy of the induced maps of the inverse limits with bonding maps, Topology Appl. 67 (1995), 113–118.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-06-12

How to Cite

1.
ANUŠIĆ, Ana and MOURON, Christopher. Topological entropy of diagonal maps on inverse limit spaces. Topological Methods in Nonlinear Analysis. Online. 12 June 2022. Vol. 59, no. 2B, pp. 867 - 895. [Accessed 4 July 2025]. DOI 10.12775/TMNA.2021.043.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2B (June 2022)

Section

Articles

License

Copyright (c) 2022 Ana Anušić, Christopher Mouron

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop