Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On Caristi fixed point theorem for set-valued mappings
  • Home
  • /
  • On Caristi fixed point theorem for set-valued mappings
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

On Caristi fixed point theorem for set-valued mappings

Authors

  • Karim Chaira
  • Soumia Chaira
  • Samih Lazaiz https://orcid.org/0000-0001-7007-5233

DOI:

https://doi.org/10.12775/TMNA.2021.030

Keywords

Caristi fixed point theorem, set-valued mappings, ordered metric spaces, reflexive Banach spaces

Abstract

The aim of this paper is to discuss Penot's problem on a generalization of Caristi's fixed point theorem. We settle this problem in the negative and we present some new theorems on the existence of fixed points of set-valued mappings in ordered metric spaces and reflexive Banach spaces.

References

M. Aamri, K. Chaira, S. Lazaiz and El-M. Marhrani, Caristi type fixed point theorems using Száz principle in quasi-metric spaces, Carpathian J. Math. 36 (2020), no. 2, 179–188.

M.R. Alfuraidan and M.A. Khamsi, Remarks on Caristi’s fixed point theorem in metric spaces with a graph, Abstr. Appl. Anal. 2014 (2014).

M.R. Alfuraidan and M.A. Khamsi, Fibonacci–Mann iteration for monotone asymptotically nonexpansive mappings, Bull. Aust. Math. Soc. 96 (2017), no. 2, 307–316.

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math 3 (1922), no. 1, 133–181.

A. Brøndsted, Fixed points and partial orders, Proc. Amer. Math. Soc. 60 (1976), no. 1, 365–366.

J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251.

K. Chaira, A. Eladraoui, M. Kabil and S. Lazaiz, Extension of Kirk–Saliga fixed point theorem in a metric space with a reflexive digraph, Int. J. Math. Math. Sci. 2018, (2018).

K. Chaira, M. Kabil, A. Kamouss and S. Lazaiz, Best proximity points for monotone relatively nonexpansive mappings in ordered banach spaces, Axioms 8 (2019), no. 4, 121.

Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317 (2006), no. 1, 103–112.

J.R. Jachymski, Caristi’s fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl. 227 (1998), no. 1, 55–67.

J.S. Jung, Y.J. Cho, S.M. Kang and S.-S. Chang, Coincidence theorems for set-valued mappings and Ekeland’s variational principle in fuzzy metric spaces, Fuzzy Sets and Systems 79 (1996), no. 2, 239–250.

M.A. Khamsi, Remarks on Caristi’s fixed point theorem, Nonlinear Anal. 71 (2009), no. 1–2, 227–231.

A.T.-M. Lau and L. Yao, Common fixed point properties for a family of set-valued mappings, J. Math. Anal. Appl. 459 (2018), no. 1, 203–216.

W. Lee and Y. Choi, A survey on characterizations of metric completeness Nonlinear Analysis Forum, vol. 19, 2014, pp. 265–276.

S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), no. 2, 475–488.

J.J. Nieto and R. Rodrı́guez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), no. 3, 223–239.

J.-P. Penot, Fixed point theorems without convexity, Mém. Soc. Math. Fr. (N.S.) 60 (1979), 129–152.

A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. (2004), 1435–1443.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-06

How to Cite

1.
CHAIRA, Karim, CHAIRA, Soumia and LAZAIZ, Samih. On Caristi fixed point theorem for set-valued mappings. Topological Methods in Nonlinear Analysis. Online. 6 March 2022. Vol. 59, no. 1, pp. 153 - 161. [Accessed 8 December 2025]. DOI 10.12775/TMNA.2021.030.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Karim Chaira, Soumia Chaira, Samih Lazaiz

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop