Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Isolating neighborhoods and their stability for differential inclusions and Filippov systems
  • Home
  • /
  • Isolating neighborhoods and their stability for differential inclusions and Filippov systems
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

Isolating neighborhoods and their stability for differential inclusions and Filippov systems

Authors

  • Cameron Thieme https://orcid.org/0000-0001-6396-5019

DOI:

https://doi.org/10.12775/TMNA.2021.014

Keywords

Conley index, differential inclusions, Filippov systems

Abstract

Conley index theory is a powerful topological tool for obtaining information about invariant sets in dynamical systems. A key feature of Conley theory is that the index is robust under perturbation; given a continuous family of flows $\{\varphi_\lambda\}$, the index remains constant over a range of parameter values, avoiding many of the complications associated with bifurcations. This theory is well-developed for flows and homeomorphisms, and has even been extended to certain classes of semiflows. However, in recent years mathematicians and scientists have become interested in differential inclusions. Here the theory has also been studied for inclusions which satisfy certain bounding properties. In this paper we extend some of these results-in particular, the stability of isolating neighbourhoods under perturbation-to inclusions which do not satisfy these bounding properties. We do so by utilizing a novel approach to the solution set of differential inclusions which results in an object called a multiflow. This perspective allows us to relax the assumptions of the earlier work and also to develop tools needed to extend the continuation of Conley's attractor-repeller decomposition to differential inclusions, a result which is addressed in subsequent work. Our interest in these results is in the study of piecewise-continuous differential equations-which are typically reframed as a certain type of differential inclusion called Filippov systems-and how these discontinuous equations relate to families of smooth systems which limit to them. Therefore this paper also discusses in some detail how the generalization of Conley index theory applies to Filippov systems.

References

I.U. Bronstein and A.Ya. Kopanskiı̆, Chain recurrence in dynamical systems without uniqueness. Nonlinear Anal. 12 (1988), 147–154.

R. Casagrande, K.A. de Rezende and M.A. Teixeira, Conley index for discontinuous vector fields. Geom Dedicata 136 (2008), 47-56.

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38, 1978.

M. Di Bernardo, C.J. Budd, A.R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems Theory and Applications, Springer, 2008.

Z. Dzedzej and G. Gabor, On homotopy Conley index for multivalued flows in Hilbert spaces, Topol. Methods Nonlinear Anal. 38 (2011), 187–205.

A.F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Acad. Pub., 1988.

M.R. Jeffrey, Hidden dynamics in models of discontinuity and switching, Physica D 273 (2014), 34–45.

D. Li, Morse decompositions for general dynamical systems and differential inclusions with applications to control systems, SIAM J. Control Optim. 46 (2007), 35–60.

R. McGehee, Non-Unique Dynamical Systems, Midwest Dynamical Systems Conference, Minneapolis, Minnesota, 3 November, 2018.

R. McGehee and E. Sander, A new proof of the stable manifold theorem, Z. Angew. Math. Phys. 47 (1996), 497–513.

K. Mischaikow, The Conley Index Theory: A Brief Introduction, Banach Center Publ. 47 (1999), 9-19.

K. Mischaikow and M. Mrozek, Conley Index Theory, Handbook of Dynamical Systems II: Towards Applications, (B. Fiedler, ed.), North-Holland, 2002.

M. Mrozek, A cohomological index of Conley type for multi-valued admissible flows, J. Differential Equations 84 (1990), 15–51.

D. Oyama, Lecture Notes on Set-Valued Dynamical Systems, Lecture Notes, 2014.

C. Thieme, Multiflows: a new technique for Filippov systems and differential inclusions, rXiv (2019).

C. Thieme, Conley index theory and the attractor-repeller decomposition for differential inclusions, Arxiv (2020).

P. Welander, A simple heat-salt oscillator. Dynamics of Atmospheres and Oceans 6 (1982), 233–242.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-06

How to Cite

1.
THIEME, Cameron. Isolating neighborhoods and their stability for differential inclusions and Filippov systems. Topological Methods in Nonlinear Analysis. Online. 6 March 2022. Vol. 59, no. 1, pp. 53 - 86. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2021.014.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Cameron Thieme

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop