Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Maslov index for heteroclinic orbits of non-Hamiltonian systems on a two-dimensional phase space
  • Home
  • /
  • Maslov index for heteroclinic orbits of non-Hamiltonian systems on a two-dimensional phase space
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

Maslov index for heteroclinic orbits of non-Hamiltonian systems on a two-dimensional phase space

Authors

  • Qin Xing

DOI:

https://doi.org/10.12775/TMNA.2021.005

Keywords

Heteroclinic orbits, non-Hamiltonian systems on a two-dimensional phase space, Maslov index, spectral flow, Nagumo equations

Abstract

Motivated by \cite{hu2019bifurcation} and \cite{hu2017index}, we use a geometric approach to define the Maslov index for heteroclinic orbits of non-Hamiltonian systems on a two-dimensional phase space, and we proceed by explaining the Maslov index is equal to the sum of the nullity of a family of Fredholm operators. As an application, we illustrate the role of our results in the Nagumo equation.

References

A. Abbondandolo and P. Majer, Ordinary differential operators in Hilbert spaces and Fredholm pairs, Math. Z. 243 (2003), 525–562.

J. Alexander, R. Gardner and C. Jones, A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math. 410 (1990), 167–212.

M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry III, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 71–99.

S.E. Cappell, R. Lee and E.Y. Miller, On the Maslov index, Comm. Pure Appl. Math. 47 (1994), no. 2, 121–186.

F. Chardard, F. Dias and T.J. Bridges, Computing the Maslov index of solitary waves. I. Hamiltonian systems on a four-dimensional phase space, Physica D. Nonlinear Phenomena 238 (2009), no. 18, 1841–1867.

C.-N. Chen and X. Hu, Maslov index for homoclinic orbits of Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), no. 4, 589–603.

C.-N. Chen and X. Hu, Stability snalysis for standing pulse solutions to FitzHugh–Nagumo equations, Calc. Var. Partial Differential Equations 49 (2014), no. 1–2, 827–845.

P. Cornwell, Opening the Maslov box for traveling waves in skew-gradient systems: counting eigenvalues and proving (in)stability, Indiana Univ. Math. J. 68 (2019), no. 6, 1801–1832.

P. Cornwell and C.K.R.T. Jones, On the existence and stability of fast traveling waves in a doubly diffusive FitzHugh–Nagumo system, SIAM J. Appl. Dyn. Syst. 17 (2018), no. 1, 754–787.

J.J. Duistermaat, On the Morse index in variational calculus, Adv. Math. 21 (1976), no. 2, 173–195.

X. Hu and A. Portaluri, Index theory for heteroclinic orbits of Hamiltonian systems, Calc. Var. Partial Differential Equations 56 (2017), no. 6, paper no. 167, 24 pp.

X. Hu and A. Portaluri, Bifurcation of heteroclinic orbits via an index theory, Math. Z. 292 (2019), no. 1–2, 705–723.

X. Hu, A. Portaluri, L. Wu and Q. Xing, Morse index theorem for heteroclinic orbits of Lagrangian systems, (Apr. 18, 2020), arXiv: 2004.08643 [math].

T. Kapitula and K. Promislow, Spectral and Dynamical Stability of Nonlinear Waves, vol. 185, Applied Mathematical Sciences, New York, NY, Springer New York, 2013.

[H. McKean, Nagumos equation, Adv. Math. 4 (June 1970), no. 3, 209–223.

J. Pejsachowicz, Bifurcation of homoclinics, Proc. Amer. Math. Soc. 136 (2008), no. 1, 111–118.

J. Robbin and D. Salamon, The Maslov index for paths, Topology 32 (October 1993), no. 3, 827–844.

Y. Zhou, L. Wu and C. Zhu, Hörmander index in finite-dimensional case, Front. Math. China 13 (2018), no. 3, 725–761.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-06

How to Cite

1.
XING, Qin. Maslov index for heteroclinic orbits of non-Hamiltonian systems on a two-dimensional phase space. Topological Methods in Nonlinear Analysis. Online. 6 March 2022. Vol. 59, no. 1, pp. 113 - 130. [Accessed 8 July 2025]. DOI 10.12775/TMNA.2021.005.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Qin Xing

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop