Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The homotopy classification of proper Fredholm maps of index one
  • Home
  • /
  • The homotopy classification of proper Fredholm maps of index one
  1. Home /
  2. Archives /
  3. Vol 59, No 2A (June 2022) /
  4. Articles

The homotopy classification of proper Fredholm maps of index one

Authors

  • Alberto Abbondandolo https://orcid.org/0000-0003-0554-7016
  • Thomas Rot https://orcid.org/0000-0001-5211-8332

DOI:

https://doi.org/10.12775/TMNA.2020.068

Keywords

Fredholm maps, Pontryagin-Thom construction, framed cobordism

Abstract

In a previous paper, we classified the homotopy classes of proper Fredholm maps from an infinite dimensional Hilbert manifold to its model space in terms of a suitable version of framed cobordism. We explicitly computed these homotopy classes for non-positive index. In this paper, we compute the homotopy classes of proper Fredholm maps of index one from a simply connected Hilbert manifold to its model space. This classification uses a new numerical invariant for proper Fredholm maps of index one.

References

A. Abbondandolo and P. Majer, Infinite dimensional Grassmannians, J. Operator Theory 61 (2009), 16–62.

A. Abbondandolo and T. Rot, On the homotopy classification of proper Fredholm maps into a Hilbert space, J. Reine Angew. Math. 759 (2020), 161–200, 2020.

M.F. Atiyah, K-Theory, Advanced Book Classics, Addison–Wesley Publishing Company, Advanced Book Program, Redwood City, CA, second edition, 1989.

M. Berger, Nonlinearity and Functional Analysis, Academic Press, 1977.

R. Bott, The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313–317.

K.D. Elworthy and A.J. Tromba, Differential structures and Fredholm maps on Banach manifolds, Global Analysis (S.S. Chern and S. Smale, eds.), Proc. Sympos. Pure Math., vol. 15, 1970, pp. 45–94.

A. Floer and H. Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993), 13–38.

K. Gęba, Fredholm σ-proper maps of Banach spaces, Fund. Math. 64 (1969), 341–373.

P. Konstantis, A counting invariant for maps into spheres and for zero loci of sections of vector bundles, Abh. Math. Semin. Univ. Hambg. 90 (2020), 183–199.

A.A. Kosinski, Differential Manifolds, Academic Press, 1993.

N.H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19–30.

D. Quillen, Determinants of Cauchy–Riemann operators over a Riemann surface, Functional Anal. Appl. 19 (1985), 31–34.

A. Schwarz, On the homotopic topology of Banach spaces, Dokl. Akad. Nauk SSSR 154, (1964), 61–63.

S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866.

N.E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. (2) 48 (1947), 290–320.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-01-30

How to Cite

1.
ABBONDANDOLO, Alberto and ROT, Thomas. The homotopy classification of proper Fredholm maps of index one. Topological Methods in Nonlinear Analysis. Online. 30 January 2022. Vol. 59, no. 2A, pp. 585 - 621. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2020.068.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2A (June 2022)

Section

Articles

License

Copyright (c) 2022 Alberto Abbondandolo, Thomas Rot

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop