Topological entropy of diagonal maps on inverse limit spaces
DOI:
https://doi.org/10.12775/TMNA.2021.043Keywords
Topological entropy, inverse limit space, set-valued mapsAbstract
We give an upper bound for the topological entropy of maps on inverse limit spaces in terms of their set-valued components. In a special case of a diagonal map on the inverse limit space $\underleftarrow{\lim}(I,f)$, where every diagonal component is the same map $g\colon I\to I$ which strongly commutes with $f$ (i.e.\ $f^{-1}\circ g=g\circ f^{-1}$), we show that the entropy equals $\max\{\mbox{\rm Ent}(f),\mbox{\rm Ent}(g)\}$. As a side product, we develop some techniques for computing topological entropy of set-valued maps.References
R.L. Adler, A.G. Konheim and M.H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319.
L. Alvin and J. Kelly, Topological entropy of Markov set-valued functions, Ergodic Theory Dynam. Systems (2019), 17 pp.
A. Anušić and C. Mouron, Strongly commuting interval maps, preprint 2020, arXiv: 2010.15328 [math.DS].
R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414.
R. Bowen, Topological entropy and axiom A, Proc. Sympos. Pure Math. XIV (1970), 23–41.
H. Bruin and S. Štimac, Entropy of homeomorphisms on unimodal inverse limit spaces, Nonlinearity 26 (2013), 991–1000.
D. Carrasco-Olivera, R. Metzger Alvan and A. Morales Rojas, Topological entropy for set-valued maps, Discrete Contin. Dyn. Syst. Ser. B 20 (2015), 3461–3474.
E.I. Dinaburg, A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR 190 (1970), 19–22. (in Russian)
G. Erceg and J. Kennedy, Topological entropy on closed sets in [0, 1]2 , Topology Appl. 246 (2018), 106–136.
H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen, Compos. Math. 4 (1937), 145–234.
L. Hoehn and R. Hernández-Gutiérrez, A fixed-point-free map of a tree-like continuum induced by bounded valence maps on trees, Colloq. Math. 151 (2018), no. 2, 305–316.
W.T. Ingram and W.S. Mahavier, Inverse limits of upper semi-continuous set valued functions, Houston J. Math. 32 (2006), no. 1, 119–130.
J.P. Kelly and T. Tennant, Topological entropy of set-valued functions, Houston J. Math. 43 (2017), no. 1, 263–282.
J. Kennedy and V. Nall, Dynamical properties of shift maps on inverse limits with a set valued function, Ergodic Theory Dynam. Systems 38 (2018), no. 4, 1499–1524.
W.S. Mahavier, Inverse limits with subsets of [0, 1] × [0, 1], Topology Appl. 141 (2004), no. 1–3, 225–231.
J. Mioduszewski, Mappings of inverse limits, Colloq. Math. 10 (1963), 39–44.
M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45–63.
C. Mouron, A chainable continuum that admits a homeomorphism with entropy of arbitrary value, Houston J. Math. 35 (2009), no. 4, 1079–1090.
C. Mouron, Entropy of shift maps of the pseudo-arc, Topology Appl. 159 (2012), 34–39.
C. Mouron, Exact maps of the pseudo-arc, Topology Proc. 59 (2022), 315–328.
L.G. Oversteegen and J.T. Rogers, Jr., An inverse limit description of an atriodic tree-like continuum and an induced map without a fixed point, Houston J. Math. 6 (1980), no. 4, 549–564.
L.G. Oversteegen and J.T. Rogers, Jr., Fixed-point-free maps on tree-like continua, Topology Appl. 13 (1982), no. 1, 85–95.
B. Raines and T. Tennant, The specification property on a set-valued map and its inverse limit, Houston J. Math. 44 (2018), no. 2, 665–677.
X. Ye, Topological entropy of the induced maps of the inverse limits with bonding maps, Topology Appl. 67 (1995), 113–118.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Ana Anušić, Christopher Mouron
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0