Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Proper $k$-ball-contractive mappings in $C_b^m[0, + \infty)$
  • Home
  • /
  • Proper $k$-ball-contractive mappings in $C_b^m[0, + \infty)$
  1. Home /
  2. Archives /
  3. Vol 58, No 2 (December 2021) /
  4. Articles

Proper $k$-ball-contractive mappings in $C_b^m[0, + \infty)$

Authors

  • Diana Caponetti
  • Alessandro Trombetta
  • Giulio Trombetta

DOI:

https://doi.org/10.12775/TMNA.2021.017

Keywords

Retraction, measure of noncompactness, $k$-ball-contraction, proper mapping

Abstract

In this paper we deal with the Banach space $\C [0, + \infty)$ of all $m$-times continuously derivable, bounded with all derivatives up to the order $m$, real functions defined on $[0,+ \infty)$. We prove, for any $\eps > 0$, the existence of a new proper $k$-ball-contractive retraction with $k < 1+ \eps$ of the closed unit ball of the space onto its boundary, so that the Wo\'sko constant $W_\gamma (\C [0, + \infty))$ is equal to $1$.

References

R.R. Akhmerov, M.I. Kamenskiı̆, A.S. Potapov and B.N. Sadovskiı̆, Condensing operators, Math. Anal. 18 (1980), 185–250 (Russian); English transl.: J. Sov. Math. (1982), 551–578.

M. Annoni and E. Casini, An upper bound for the Lipschitz retraction constant in l1 , Studia Math. 180 (2007), no. 1, 73–76.

J. Appell, N.A. Erzakova, S. Falcon Santana and M. Väth, On some Banach space constants arising in nonlinear fixed point and eigenvalue theory, Fixed Point Theory Appl. 4 (2004), 317–336.

J. Appell, E. De Pascale and A. Vignoli, Nonlinear Spectral Theory, de Gruyter, Berlin, 2004.

Y. Benyamini and Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), no. 3, 439–445.

K. Bolibok, Minimal displacement and retraction problems for balls in Banach spaces, Mariae Curie-Sklodowska University, Ph.D. Thesis, 1999 (in Polish).

D. Caponetti and G. Trombetta, On proper k-ball contractive retractions in the Banach space BC([0, ∞)), Nonlinear Func. Anal. Appl. 10 (2005), no. 3, 461–467.

D. Caponetti, A.Trombetta and G. Trombetta, A note on boundary conditions for nonlinear operators, Indian J. Pure Appl. Math. 39 (2008), no. 5, 423–433.

D. Caponetti, A. Trombetta and G. Trombetta, On boundary conditions for wedge operators on radial sets, Numer. Funct. Anal. Optim. 29 (2008), no. 9–10, 979–986.

D. Caponetti, A. Trombetta and G. Trombetta, Examples of proper k-ball contractive retractions in F-normed spaces, J. Math. Anal. Appl. 335 (2007), no. 2, 1105–1118.

D. Caponetti, A. Trombetta and G. Trombetta, An extension of Guo’s theorem via k-ψ-contractive retractions, Nonlinear Anal. 64 (2006), no. 9, 1897–1907.

D. Caponetti, A. Trombetta and G. Trombetta, Proper 1-ball contractive retractions in Banach spaces of measurable functions, Bull. Austral. Math. Soc. 72 (2005), no. 2, 299–315.

D. Caponetti, A. Trombetta and G. Trombetta, Optimal retraction problem for proper k-ball-contractive mappings in C m [0, 1], Topol. Methods Nonlinear Anal. 53 (2019), no. 1, 111–125.

E. Casini and K. Goebel, Why and how much Brouwer’s fixed point theorem fails in noncompact setting?, Milan J. Math. 78 (2010), no. 2, 371–394.

E. Casini and L. Piasecki, The minimal displacement and optimal retraction problems in some Banach spaces, J. Nonlinear Convex Anal. 18 (2017), no. 1, 61–71.

V. Colao, A. Trombetta and G. Trombetta, Hausdorff norms of retractions in Banach spaces of continuous functions, Taiwanese J. Math. 13 (2009), no. 4, 1139–1158.

W. Feng, A new spectral theory for nonlinear operators and its applications, Abstr. Appl. Anal. 2 (1997), 163–183.

D.J. Guo, Eigenvalues and eigenvectors of nonlinear operators, Chinese Ann. Math. 2 (1981), 65–80.

D.J. Guo, A new fixed point theorem, Acta Math. Sinica 24 (1981), 444–450.

K. Goebel, On the minimal displacement of points under Lipschitzian mappings, Pacific J. Math. 45 (1973), 151–163.

K. Goebel, On the problem of retracting balls onto their boundary, Abstr. Appl. Anal. 2 (2003), 101–110.

K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.

K. Goebel, G. Marino, L. Muglia and R. Volpe, The retraction constant and minimal displacement characteristic of some Banach spaces, Nonlinear Anal. 67 (2007), no. 3, 735–744.

I.-S. Kim and M. Väth, Some remarks on measures of noncompactness and retractions onto spheres, Topology Appl. 154 (2007), no. 17, 3056–3069.

L. Piasecki, Retracting ball onto sphere in BC0 (R), Topol. Methods Nonlinear Anal. 33 (2009), no. 2, 307–313.

L. Piasecki, Retracting a ball onto a sphere in some Banach spaces, Nonlinear Anal. 74 (2011), no. 2, 396–399.

M. Väth, On the minimal displacement problem of γ-Lipschitz maps and γ-Lipschitz retractions onto the sphere, Z. Anal. Anwend. 21 (2002), no. 4, 901–914.

J. Wośko, An example related to the retraction problem, Ann. Univ. Mariae Curie-Sklodowska 45 (1991), 127–130.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-12-13

How to Cite

1.
CAPONETTI, Diana, TROMBETTA, Alessandro and TROMBETTA, Giulio. Proper $k$-ball-contractive mappings in $C_b^m[0, + \infty)$. Topological Methods in Nonlinear Analysis. Online. 13 December 2021. Vol. 58, no. 2, pp. 609 - 639. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2021.017.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 2 (December 2021)

Section

Articles

License

Copyright (c) 2021 Diana Caponetti, Alessandro Trombetta, Giulio Trombetta

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop