Topological **M**ethods in **N**onlinear **A**nalysis Volume 58, No. 2, 2021, 609–639 DOI: 10.12775/TMNA.2021.017

© 2021 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

PROPER *k*-BALL-CONTRACTIVE MAPPINGS IN $C_b^m[0, +\infty)$

Diana Caponetti — Alessandro Trombetta Giulio Trombetta

ABSTRACT. In this paper we deal with the Banach space $C_b^m[0, +\infty)$ of all *m*-times continuously derivable, bounded with all derivatives up to the order *m*, real functions defined on $[0, +\infty)$. We prove, for any $\varepsilon > 0$, the existence of a new proper *k*-ball-contractive retraction with $k < 1 + \varepsilon$ of the closed unit ball of the space onto its boundary, so that the Wośko constant $W_{\gamma}(C_b^m[0, +\infty))$ is equal to 1.

1. Introduction

Given a Banach space X, we denote by $B(X) = \{x \in X : ||x|| \leq 1\}$ the closed unit ball and by $S(X) = \{x \in X : ||x|| = 1\}$ the unit sphere in X. It is well known that in any infinite-dimensional Banach space X there is a retraction from B(X) onto S(X), that is, a continuous mapping $R: B(X) \to S(X)$ such that Rx = x for $x \in S(X)$. Moreover, such a retraction can be chosen to be Lipschitzian [5] with $||Rx - Ry|| \leq k_0 ||x - y||$, for some universal constant k_0 . The optimal retraction problem, considered for the first time in [20], consists in the evaluation, in a given Banach space X, of the constant $k_0(X)$ which is the infimum of all k for which there exists a retraction of B(X) onto S(X)being Lipschitz with constant k. The problem has found a large interest in the literature. It is known $k_0(X) \geq 3$ for every space X. For the evaluation of the

²⁰²⁰ Mathematics Subject Classification. Primary: 47H08; Secondary: 46B20, 46E15.

Key words and phrases. Retraction; measure of noncompactness; k-ball-contraction; proper mapping.

The first author was supported by FFR 2018/Università di Palermo.