Linearization of topologically Anosov homeomorphisms of non compact surfaces of genus zero and finite type
DOI:
https://doi.org/10.12775/TMNA.2021.002Keywords
Topologically expansive homeomorphism, topological shadowing property, Topologically Anosov plane homeomorphismAbstract
We study the dynamics of {\it topologically Anosov} homeomorphisms of non-compact surfaces. In the case of surfaces of genus zero and finite type, we classify them. We prove that if $f\colon S \to S$, is a Topologically Anosov homeomorphism where $S$ is a non-compact surface of genus zero and finite type, then $S= \mathbb{R}^2$ and $f$ is conjugate to a homothety or reverse homothety (depending on wether $f$ preserves or reverses orientation). A weaker version of this result was conjectured in \cite{cgx}.References
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland Math. Library, vol. 52, 1994.
M. Barge and B. Martensen, Classification of expansive attractors on surfaces, Ergodic Theory Dynam. Systems 55 (2011), no. 6, 1619–1639.
L.E.J. Brouwer, Beweis des ebenen translationssatzes, Math. Ann. 72 (1912), 37–54.
B.F. Bryant, Unstable Self-Homeomorphisms of a Compact Space, Ph.D. thesis, Vanderbilt University, 1954.
G. Cousillas, A fixed point theorem for plane homeomorphisms with the topological shadowing property, preprint. arXiv:1804.02244
G. Cousillas, J. Groisman and J. Xavier, Topologically Anosov plane homeomorphisms, Topol. Methods Nonlinear Anal. 54 (2019), 371–382.
E. Coven and M. Keane, Every compact space that supports a positively expansive homeomorphism is finite, IMS Lecture Notes Monograph Series, vol. 48, 2006, pp. 304–305.
T. Das, K. Lee, D. Richeson and J. Wiseman, Topologically Anosov plane homeomorphisms, Topology Appl. 160 (2013), 149–158.
A. Gasull, J. Groisman and F. Mañosas, Linearization of planar homeomorphisms, Topol. Methods Nonlinear Anal. 48 (2016), no. 2, 493–506.
J. Groisman and J. Vieitez, On transitive expansive homeomorphisms of the plane, Topology Appl. 178 (2014), 125–135.
B. Kerékjártó, Sur le caractère topologique des representations conformes, Acad. Sci. Paris 198 (1934), 317–320.
B. Kerékjártó, Topologische Charakterisierung der linearen, Acta Litt. Acad. Sei. Szeged. 6 (1934), 235–262.
K. Lee, N.-T. Nguyen and Y. Yang, Topological stability and spectral decomposition for homeomorphisms on oncompact spaces, Discrete Contin. Dyn. Syst. 38 (2018), 2487–2503.
J. Lewowicz, Dinámica de los Homeomorphismos Expansivos, Monografias del IMCA, vol. 36, 2003.
C. Mouron, Tree-like continua do not admit expansive homeomorphisms, Proc. Amer. Math. Soc. 130 (2002), no. 11, 3409–3413.
C. Mouron, Expansive homeomorphisms and plane separating continua, Topology Appl. 155 (2008), no. 9, 1000–1012.
S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Topological Methods in Nonlinear Analysis
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0